C3-056-03017-8.1

PRELIMINARY ASSESSMENT FORBES (EX) ATLAS MISSILE SITE S-5, ALLEN, KANSAS CERCLIS ID No. KSSFN0703129

Superfund Technical Assessment and Response Team (START) 3

Contract No. EP-S7-06-01, Task Order No. 0002.001.002

Prepared For:

U.S. Environmental Protection Agency Region 7 901 North 5th Street Kansas City, Kansas 66101

RECEIVED

OCT 2 6 2007

BUREAU OF ENVIRONMENTAL REMEDIATION

Prepared By:

July 6, 2007

Tetra Tech EM Inc. 8030 Flint Street Lenexa, Kansas 66214 (913) 894-2600

July 6, 2007

1

Mr. Roy Crossland START Project Officer U.S. Environmental Protection Agency, Region 7 901 North 5th Street Kansas City, Kansas 66101

Subject: Preliminary Assessment Forbes (ex) Atlas Missile Site S-5, Allen, Kansas EPA ID: KSSFN0703129 U.S. EPA Region 7 START 3, Contract No. EP-S7-06-01 Task Order No. 0002.001.002 Task Monitor: Paul Roemerman, EPA Site Assessment Manager

Dear Mr. Crossland:

Tetra Tech EM Inc. is submitting the enclosed Preliminary Assessment report for the above-referenced facility. A Hazard Ranking System scoring memorandum will be submitted separately. If you have any questions or comments regarding this submittal, please contact the project manager at (913) 495-3971 or Stephanie Luebbering at (913) 495-3920.

Sincerely,

For Robert E. Monnig, PE START Project Manager

Ted Faile, PG, CHMM START Program Manager

Enclosures

Tetra Tech EM Inc. 8030 Flint Street, Lenexa, KS 66214 Tel 913.894.2600 Fax 913.894.6295 www.tetratech.com

X9004.06.0002.001.002

CONTENTS

<u>Sectio</u>	<u>n</u>		<u>P</u>	<u>age</u>
1.0	INTRO	ODUCTI	ION	1
2.0	SITE	DESCRI	PTION	2
	2.1 2.2 2.3 2.4	SITE E OPERA	LOCATION DESCRIPTION ATIONAL HISTORY LATORY INVOLVEMENT	2 2
		2.4.1 2.4.2	U.S. Army Corps of Engineers U.S. Environmental Protection Agency	
3.0	INVE	STIGAT	IVE EFFORTS	3
	3.1 3.2		IOUS SAMPLING MPLING Soil Sampling Sediment Sampling Groundwater Sampling	3 4 9
4.0	HAZA	RD RA	NKING SYSTEM FACTORS	. 14
	4.1 4.2		CES OF CONTAMINATION NDWATER PATHWAY	
		4.2.1 4.2.2 4.2.3	Hydrogeological Setting Groundwater Targets Groundwater Pathway Conclusions	. 16
	4.3 4.4		ACE WATER PATHWAY EXPOSURE AND AIR PATHWAYS	
5.0	EMER	GENCY	' RESPONSE CONSIDERATIONS	. 18
6.0	SUMN	/ARY		. 19
7.0	REFEI	RENCES	5	. 21

(

•

CONTENTS (Continued)

<u>Appendix</u>

._./

 $\left(\right)$

- A FIGURES
- B PHOTOGRAPHIC LOG
- C FIELD LOGBOOK
- D FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS
- E ANALYTICAL RESULTS

TABLES

<u>Table</u>	<u>Page</u>
TABLE SOIL SAMPLE SUMMARY	5
TABLE 2 ANALYTICAL DATA SUMMARY FOR SHALLOW SOIL SAMPLES	7
TABLE 3 ANALYTICAL DATA SUMMARY FOR DEEP SOIL SAMPLES	8
TABLE 4 SEDIMENT SAMPLE SUMMARY	10
TABLE 5 ANALYTICAL DATA SUMMARY FOR SEDIMENT SAMPLES	11
TABLE 6 GROUNDWATER SAMPLE SUMMARY	12
TABLE 7 ANALYTICAL DATA SUMMARY FOR GROUNDWATER SAMPLES	15

.

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA), Region 7, under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), tasked Tetra Tech EM, Inc. (Tetra Tech) to conduct a preliminary assessment (PA) of the Forbes (ex) Atlas Missile S-5 (Atlas S-5) in Allen, Lyon County, Kansas, under Superfund Technical Assessment and Response Team (START) 3 Contract Number EP-S7-06-01, Task Order Number 0002.001.002.

The purpose of this PA is to review existing information on Atlas S-5 and its environs; to assess the threat(s), if any, posed to public health, welfare, or the environment; and to determine if further investigation under CERCLA/SARA is warranted. The scope of the PA includes the review of information available from federal, state, and local agencies, performance of an on-site reconnaissance, and sampling.

Using these sources of existing information and sampling data, the facility is then evaluated using the EPA Hazard Ranking System (HRS) criteria to assess the relative threat associated with actual or potential releases of hazardous substances. The HRS has been adopted by the EPA to help set priorities for further evaluation and eventual remedial action at hazardous waste sites. The HRS is the primary method of determining a site's eligibility for placement on the National Priorities List (NPL). The NPL identifies facilities at which the EPA may conduct remedial response actions. This report summarizes the findings of these preliminary investigative activities.

Atlas S-5 was identified as a potential hazardous waste site and entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) on May 4, 1993 (KSSFN0703129) (EPA 2007a).

Apparent Problem

The operational history of the facility is described in Section 2.3. Historical processes at Atlas S-5, a formerly used defense site (FUDS), likely used fuels, hydraulic fluids, solvents, oils, and lubricants. Possible sources for contamination include hydraulic systems, underground storage tanks (UST), water treatment systems, transformers containing polychlorinated biphenyls (PCB), surface impoundments, and maintenance activity areas. Previous investigations have documented chlorinated solvents in soil and groundwater at the facility (U.S. Army Corps of Engineers [USACE] 2004). The use of materials containing perchlorate at the facility is unknown, but perchlorate is a common FUDS contaminant.

2.0 SITE DESCRIPTION

The facility location, description, operational history, waste characteristics, and previous investigations of Atlas S-5 are discussed below.

2.1 SITE LOCATION

The former Atlas S-5 facility is located in Lyon County, Kansas, approximately 8 miles west-northwest of Allen, Kansas. The site is located in the southeast quarter of Section 4 in Township 16 North, Range 10 East (see Appendix A, Figure 1). The approximate geographic coordinates for the central portion of the site are 38° 41' 13" north latitude and 96° 18' 12" west longitude.

2.2 SITE DESCRIPTION

The former missile facility occupies approximately 25 acres and includes a buried, horizontal concrete vault, with launch doors located at ground surface. Additional improvements at Atlas S-5 included a launch operations building, a missile maintenance building, a cooling tower, a launch and services building, a water supply building, a septic system, a fuel storage system, sewage lagoons, and a tunnel. Structures remaining at the facility include the horizontal concrete vault (missile coffin), underground launch operation rooms, concrete pads, and sewage lagoons (see Appendix A, Figure 2).

2.3 OPERATIONAL HISTORY

~

The Department of Defense (DoD) acquired 25 acres in fee and 236 acres in easements between 1960 and 1963 to house an Atlas E-Type Intercontinental Ballistic Missile (ICBM) in connection with the Forbes Air Force Base in Topeka, Kansas. The facility operated from 1961 until 1965, when it was decommissioned. In 1965, the facility was reported as excess and was subsequently sold (USACE 1993). The facility is currently privately owned and the facility is not apparently being used for any purpose. No person(s) are currently residing on the former missile facility.

2.4 REGULATORY INVOLVEMENT

Requests for information were made to agencies possibly involved with Atlas S-5. A summary of involvement by these agencies is as follows.

2.4.1 U.S. Army Corps of Engineers

The USACE conducted a site visit on November 18, 1992, and concluded that hazardous conditions existed at the Atlas S-5 facility, and that the facility was eligible for cleanup under the Defense Environmental Restoration Program for FUDS (USACE 1993).

2.4.2 U.S. Environmental Protection Agency

Atlas S-5 was not listed in the Resource Conservation and Recovery Information System (RCRIS) database, as of May 2, 2007 (EPA 2007b).

3.0 INVESTIGATIVE EFFORTS

Section 3.0 discusses historical investigations, as well as the current PA field sampling and associated quality assurance (QA)/quality control (QC) activities at Atlas S-5.

3.1 PREVIOUS SAMPLING

Previous sampling was conducted at Atlas S-5 by the USACE. In 1991, the USACE completed a confirmation study (CS) at Atlas S-5. Trichloroethene was detected at 0.010 milligrams per kilogram (mg/kg) in soil and 85 parts per billion (ppb) in groundwater at the facility. 1,2-Dichloroethene was detected at 104 ppb in groundwater. Heavy metals were detected in the soils at concentrations exceeding background levels (EPA 1997). Based on the CS, the USACE recommended further action; however, at the time, access to the site was denied by the property owner (USACE 2004).

3.2 PA SAMPLING

The general objective of the PA was to determine whether any threats to human health or the environment exist as a result of releases to soil and groundwater. A site reconnaissance was conducted in September 2006 at which time photographs were taken and historical information about the site was collected. START Team Members (STM) Robert Monnig, Dean Williams, and Quan Do conducted PA sampling activities during the week of January 14, 2007.

Field activities included collection of soil, sediment, and groundwater samples on the facility and groundwater samples from nearby private wells. A site-specific Quality Assurance Project Plan (QAPP) in support of PA activities, developed by START, had been submitted and approved by EPA on January 11, 2007 (Tetra Tech 2006). Field activities were conducted in accordance with the approved QAPP, except where noted in this report. Photographs documenting field activities are included in Appendix B.

1

Sampling related activities were recorded in a logbook, a copy of which is included in Appendix C. Samples for analytical services request (ASR) 3324 were delivered to the EPA Region 7 laboratory in two shipments—the first shipment was delivered via Federal Express on January 17, 2007, and the second shipment was hand-delivered by Tetra Tech on January 18, 2007. Field sheets and chain-of-custody records are included in Appendix D, and analytical results are included in Appendix E. The data were validated by EPA Region 7 QA personnel. Sampling methodologies, locations, analysis, and analytical results for the PA activities are summarized below.

3.2.1 Soil Sampling

Based on previous investigations, site reconnaissance observations, and background information about the facility, a biased or judgmental sampling scheme was followed to select source sampling locations at Atlas S-5. Sampling locations are illustrated on Figure 2 (see Appendix A). Between January 16 and 18, 2007, START sampled 11 boreholes using a Geoprobe[®] direct-push apparatus, focusing on the locations of government improvements. One soil sample was collected by hand from a soil stockpile located on the facility. A background sample was collected from a borehole located upgradient of Atlas S-5, to the north of the facility at the end of Road D. At each boring, soil samples were collected from a shallow interval—ranging from 0 to 4 feet below ground surface (bgs)—and, except when shallow probe refusal was encountered, from a second, deeper interval ranging from 4 to 18 feet bgs. Sample locations are summarized in Table 1.

Shallow probe refusal was encountered due to hard clay or stones at each of the soil boring locations; therefore, collection of deep soil samples to a depth of 30 feet bgs, as specified in the QAPP, was not possible.

Nineteen soil samples were submitted to the EPA Region 7 laboratory to be analyzed for metals, perchlorate, PCBs, total petroleum hydrocarbons (TPH), semi-volatile organic compounds (SVOC), and volatile organic compounds (VOC). A trip blank and two extra volume samples for matrix spike and matrix spike duplicate (MS/MSD) analysis were collected for quality control purposes. For each sample to be analyzed for VOCs, 5 grams of soil was placed into two 40-milliliter (mL) vials preserved with sodium bisulfate. Four additional 40-mL vials were filled for purgeable TPH and percent solids analysis. In addition, three 8-ounce (oz) jars were filled and submitted for analysis of extractable TPH, perchlorate, metals, SVOCs, and PCBs. Samples were placed into a cooler containing ice, where they were stored at a temperature at or below 4 degrees Celsius (°C) pending submittal to the EPA Region 7 laboratory.

4

TABLE 1

SOIL SAMPLE SUMMARY FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

EPA Sample Number	Location	Depth (ft bgs)	Sample Date	Sample Time
3324-1		0-2		14:15
3324-2	Within facility, near control center and bend in road.	16-18	01/15/2007	15:14
3324-3	Within facility, west of missile coffin.	0-2	01/15/2007	16:00
3324-4	Within facility, along west fence-line.	2-4	01/15/2007	16:46
3324-5	Within facility, southwest of missile coffin.	0-2	01/15/2007	17:20
3324-6	whilm facility, southwest of missile cormi.	8-10	01/15/2007	17:44
3324-7	Within facility, near south section of fence adjacent to	0-2	01/16/2007	09:50
3324-8	drainage features.	9-11	01/10/2007	10:13
3324-9	Within facility, east of missile coffin.	0-2	01/16/2007	10:42
3324-10	whim facility, east of missile contin.	10-12	01/10/2007	11:11
3324-11	Within facility, near east concrete pad.	0-2	01/16/07	14:03
3324-12	whill facility, near east concrete pau.	6-8	01/10/07	14:20
3324-13	Within facility, near west concrete pad.	0-2	01/16/2007	14:43
3324-14		10-12	01/10/2007	15:03
3324-15	Near south former lagoon.	0-2	01/16/2007	15:20
3324-16	Southeast (downgradient) of facility structures on west	0-2	01/16/2007	16:00
3324-17	side of Road D.	4-6	01/16/2007	16:18
3324-18	North (upgradient) of facility at end of Road D (background sample).	2-4	01/16/2007	16:50
3324-19	From soil pile near missile coffin.	0-1	01/18/2007	12:40
3324-25	Soil trip blank.	-	01/18/2007	11:47

Notes:

EPAU.S. Environmental Protection Agencyft bgsFeet below ground surface

Analytical Data Summary

Perchlorate, PCBs, and SVOCs were not detected in the soil samples. TPH was detected in the field blank sample, but was not detected in any soil samples collected at Atlas S-5. Table 2 (for shallow soil samples) and Table 3 (for deep soil samples) present a summary of the metals and VOCs detected.

Several metals were detected in the soil samples; however, no metal was detected at a concentration exceeding three times its concentration in the background sample. Except arsenic, no metals were detected at concentrations exceeding their respective Superfund Chemical Data Matrix (SCDM) cancer

risk screening concentrations. Arsenic was detected in all but one of the soil samples collected, including the background sample 3224-18, at concentrations ranging from 1.93 to 22.1 mg/kg. These concentrations exceed arsenic's cancer risk screening concentration of 0.43 mg/kg. The highest arsenic concentration detected was in the background soil sample (3324-18). According to the U.S. Geological Survey (USGS), the mean concentration of arsenic in Lyon County, Kansas, is 8.407 mg/kg (USGS 2006). Therefore, the concentrations of arsenic identified in the soil samples at the facility are within three times the mean concentration for the County, and are assumed to be representative of naturally occurring levels.

Several organic constituents were detected in the soil samples; however, none of these constituents were detected at concentrations exceeding their respective SCDM health-based benchmarks. Of the organic constituents detected, only benzene and isomers of xylene appear to be attributable to past operations at Atlas S-5. Both benzene and xylene are commonly associated with releases of petroleum hydrocarbons. Benzene was detected in one soil sample (3324-1) at an estimated concentration of 6.4 μ g/kg. Isomers of xylene, including m and/or p-xylene and o-xylene, were detected in three soil samples (3324-1, 3324-10, and 3324-11) at estimated concentrations ranging from 6.3 to 19 μ g/kg.

Acetone, 2-butanone, and methyl cyclohexane were detected in multiple soil samples. Although acetone and 2-butanone acetone were not detected in the background sample (3324-18) or field blank (3324-25), low-level detections of these constituents are often attributed to laboratory contamination. Bis(2-ethylhexyl) phthalate was detected in three soil samples and the field blank (3324-25). Phthalates are commonly used as plasticizers for polyvinylchloride (PVC) and other polymers including rubber, cellulose, and styrene (EPA 2006); therefore, the detection of bis(2-ethylhexyl)phthalate does not necessarily appear attributable to past facility operations. Methylene chloride was detected only in the field blank (3324-25), and therefore, does not appear attributable to past facility operations. Carbon disulfide was detected one soil sample (3324-7) at a concentration of 10 µg/kg. In small amounts, carbon disulfide is released into the environment from natural processes (Agency for Toxic Substance and Disease Registry [ATSDR] 2007), and therefore, does not necessarily appear attributable to past facility operations.

TABLE 2

ANALYTICAL DATA SUMMARY FOR SHALLOW SOIL SAMPLES FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

		Benchmar	kı						Samp	le 1D (ft bgs) and Result	1				-
Analyte	RID	CR	Three Times Background Concentration	3324-1 (0-2)	3324-3 (0-2)	3324-4 (2-4)	3324-5 (2-4)	3324-7 (0-2)	3324-9 (0-2)	3324-11	3324-13 (0-2)	3324-15 (0-2)	3324-16 (0-2)	3324-18 (2-4) BKG	3324-19 (0-1)	3324-25 FB
					• • • • • • • • • • • • • • • • • • • •		Metals (mg/	kg)	••••••							•••••••
Arsenic	23	0.43	66.3	6.51 J	4.96 J	5.95 J	5.18 J	6.23 J	5.74 J	4,90 J	4.56 J	7.56 J	2.39 J	22.1 J	6,87 J	NA
Banuni	5,500	NE	567	169	136	178	129	218	124	202	169	229	161	189	134	NA
Beryllium	160	NE	2.46	0,800 J	0.616 UJ	0.8 <u>1</u> 1 J	0,728 J	0 821 J	0.623 J	0754 J	0.710 J	0 805 J	0.729 J	0,820 J	0.718 U	NA
Chronuum	230	NE	85 2	213	16.2	21.4	25 0	19.2	19,6	17.4	196	19,4	20.8	28.4	20.7	NA
Copper	NE	NE	27.66	16.6	8 12	12.0	17.5	12.8	15,0	9 87	10 7	11.5	15.0	9,22	14,6	NA
Lead	NE	NE	50.4	12.5 J	246 J	14.0 J	7,73 J	24 9 J	16.0 J	12,9 J	8 82 J	23.3 J	5.73 3	16 X J	12.73	NA
Zinc	23,000	NE	88.2	49 3	40,9	43.5	48.2	46.8	53.0	31.4	30.2	32.1	33.7	29.4	40.7	NA
							VOC: (µg/k	ж)								•
bis(2-ethylhexyl)phthalate	1,600,000	46,000	> 240	210 U	210 U	200 U	200 U	220 U	200 U	240 U	230	290	210 U	240 U	250 U	88
2-Butanone	NE	NE	> 14	16 J	20	12 U	11.0	12 U	10 U	150	140	13.0	15	14 Ü	29 U	5.0 U
Acctone	70,000,000	NE	>14	52 J	140	46	14	60	10.0	58	32	30	1(10)	140	66	5.0 U
Benzene	340,000	12,000	> 7.0	6.41	6.6 U	6,0 Ŭ	5.5 U	5.9 U	5.1 U	7.5 U	7.2 U	6.7U	6,0 U	7.0 U	15 U	5.0 U
Carbon disulfide	7,800,000	NE	> 7,0	N/A R	6.6 U	60U	5.5 U	10	5.1 U	7.5 U	7.2 U	6.7 U	6.0 U	7.0 U	15 U	5.0 U
m and/or p-Xylene	16,000,000	NE	> 7,0	19 J	6.6 U	60 U	5.5 U	15.3	5.1 U	13	7,2 U	6.7 U	6.0 U	7.0 U	15 U	5.0 U
Methylcyclohexane	NE	NE	> 7,0	N/A R	66U	6.0 U	5.5 U	5.9 U	5.1 U	7.5 Ū	7.2 U	6.7 U	60U	7.0 U	15 U	5.0 U
Methy lene chloride	4,700,000	85,000	> 7.0	N/A R	6,6 U	6,0 U	5.5 U	5.9 U	5.1 U	7.5 U	7.2 U	6.7 U	6.0 U	7,0 U	15 U	88
o-Xviene	16,000,000	NE	>70	6.31	6,6 U	6,0 Ū	5.5 U	5.9 U	5.TU	750	7,2 U	6.7 Ŭ	6,0 U	7.0 U	15 U	10 U

Not analyzed, internal standards had an unacceptable response Not established

Notes:

Bold value indicates a concentration that exceeds a benchmark value. Shaded cell indicates a concentration that exceeds three times the background concentration or the background sample detection limit.

BKG

Background sample location Cancer Risk Screening Concentration from SCDM CR

FB Field blank

- 11 bgs Feet below ground surface
- ˈD Identification
- The identification of the analyte is acceptable; reported value is an estimate. J
- Milligrams per kilogram Micrograms per kilogram mg/kg µg/kg

Not examinate Reference Does Servening Concentration from SCDM Superfund Chemical Data Matrix (EPA 2004) The analyte was not detected at or above the reporting limit, The analyte was not detected at or above the reporting limit, Ū3

N/A R

NE

RID

υ

SCDM

The reporting limit is an estimate Volatile organic compound VOC

7

.

TABLE 3

ANALYTICAL DATA SUMMARY FOR DEEP SOIL SAMPLES FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

		Benchm	arks				Sample	ID (ft bgs) and	Results		***	
Analyte	RſÐ	CR	Three Times Background Concentration	3324-2 (16-18)	3324-6 (8-10)	3324-8 (9-11)	3324-10 (10-12)	3324-12 (6-8)	3324-14 (10-12)	3324-17 (4-6)	3324-18 (2-4') BKG	3324-25 FB
			-		Metals (m	g/kg)			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Arsenic	23	0.43	66.3	1.93 J	8.24 J	4.72 J	14.7 J	7.03 J	7.51 J	1.14 UJ	22.1 J	NA
Barium	5,500	NE	567	40.5	85.8	73.0	149	93.6	174	84.3	189	NA
Beryllium	160	NE	2.46	0.511 UJ	0.583 UJ	0.614 J	1.06 J	0.644 UJ	0.783 J	0.763 J	0.820 J	NA
Chromium	230	NE	85.2	2.67	22.2	23.6	35.6	30.2	31.2	21.5	28.4	NA
Copper	NE	NE	27.66	2.55 U	19.1	14,9	16.1	7.38	18.4	15.2	9.22	NA
Lead	NE	NE	50.4	2.22 UJ	19.3 J	4.79 J	30.3 J	9.59 J	8.39 J	5.17 J	16.8 J	NA
Zinc	23,000	NE	88.2	7.34	33.9	38.8	30.8	21.0	40.0	36.9	29.4	NA
					VOCs (µ	ı/kg)						
Bis(2- ethylhexyl)phthalate	1,600,000	46,00 0	> 240	180 U	210 U	190 U	240 U	310	270 U	230 U	240 U	88
2-Butanone	NE	NE	> 14	23 U	12 U	12 U	46	12 U	14 U	29	14 U	5.0 U
Acetone	70,000,000	NE	> 14	23 U	12 U	12 U	140	15	14 U	170	14 U	5.0 U
Benzene	310,000	12,00 0	> 7.0	11 U	6.2 U	6.2 U	6.1 U	6.0 U	7.2 U	7.2 U	7.0 U	5.0 U
Carbon disulfide	7,800,000	NE	> 7.0	110	6.2 U	6.2 U	6.I U	6.0 U	7.2 U	7.2 U	7.0 U	5.0 U
m and/or p-Xylene	16,000,000	NE	> 7.0	11 U	6.2 U	6.2 U	15	6.0 U	7.2 U	7.2 U	7.0 U	5.0 U
Methylcyclohexane	NE	NE	> 7.0	110	6.2 U	6.2 U	6.1 U	6.0 U	18 J	7.2 U	7.0 U	5.0 U
Methylene chloride	4,700,000	85,00 0	> 7.0	11 U	6.2 U	6.2 U	6.1 U	6.0 U	7.2 U	7.2 U	7.0 U	88
o-Xylene	16,000,000	NE	> 7.0	11 U	6.2 U	6.2 U	6.1 U	6.0 U	7.2 U	7.2 U	7.0 U	10 U

Notes:

Bold value indicates a concentration that exceeds a benchmark value.

Shaded cell indicates a concentration that exceeds three times the background concentration or the background sample detection limit.

BKG Background sample location

- CR Cancer Risk Screening Concentration from SCDM
- FB Field blank
- ft bgs Feet below ground surface
- ID Identification
- J The identification of the analyte is acceptable; reported value is an estimate. UJ
- mg/kg Milligrams per kilogram μg/kg Micrograms per kilogram

- NA Not analyzed
- NE Not established
- RfD Reference Dose Screening Concentration from SCDM

U

SCDM Superfund Chemical Data Matrix (EPA 2004)

- The analyte was not detected at or above the reporting limit
- The analyte was not detected at or above the reporting limit.
- The reporting limit is an estimate
- VOC Volatile organic compound

3.2.2 Sediment Sampling

Based on site reconnaissance observations, a biased or judgmental sampling scheme was followed to select sediment sampling locations at Atlas S-5. Sampling locations are illustrated on Figures 2 and 3 (see Appendix A). On January 17, 2007, START collected three sediment samples from drainage features that appeared to receive stormwater runoff from the facility. In addition, START collected one background sediment sample collected from a tributary of Bluff Creek at a location upgradient of the facility. The sediment samples were collected using hand tools from a shallow interval—approximately 0 to 6 inches bgs. At the time of sampling, no surface water was present in the drainage features; therefore, no surface water samples were collected. Sample locations are summarized in Table 4.

The following deviations from the QAPP occurred: (1) sampling locations and numbers were revised, based on field conditions, and (2) no surface water was present during the sampling event; therefore, no surface water samples were collected.

Four sediment samples were submitted to the EPA Region 7 laboratory to be analyzed for metals, perchlorate, PCBs, TPH, SVOCs, and VOCs. A trip blank and one extra volume sample for MS/MSD analysis were collected for quality control purposes. For each sample, four 40-mL vials were filled with sediment for VOC and TPH analysis. In addition, three 8-ounce (oz) jars were filled and submitted for analysis of extractable TPH, perchlorate, metals, SVOCs, and PCBs. Samples were placed into a cooler containing ice, where they were stored at a temperature at or below 4 degrees °C pending submittal to the EPA Region 7 laboratory.

Analytical Data Summary

Perchlorate, PCBs, and SVOCs were not detected in the sediment samples. Table 5 presents a summary of the metals, TPH, and VOCs detected.

Except arsenic, no metals were detected in the sediment samples at concentrations exceeding their respective health-based benchmarks. Arsenic was detected in each of the sediment samples collected, including the background sample (3224-29), at concentrations ranging from 4.72 to 8.71 mg/kg. The background sediment sample (3324-29) exhibited the highest arsenic concentration of 8.71 mg/kg. These concentrations exceed arsenic's screening concentration of 0.43 mg/kg. According to the USGS, the mean concentration of arsenic in Lyon County, Kansas is 8.407 mg/kg (USGS 2006). Therefore, the concentrations of arsenic identified in the sediment samples at the facility are within three times the mean concentration for the County, and thus are assumed to be representative of naturally occurring levels.

Beryllium in sample 3324-27 and cadmium in sample 3324-28 were detected at concentrations exceeding three times their concentrations in the background sample (3324-29). Mercury was detected in sample 3324-28 at a concentration of 0.416 mg/kg, which exceeds three times its concentration in the background sample and mercury's reported mean concentration in Lyon County of 0.019 mg/kg (USGS 2006). Copper was detected in sample 3324-28 at a concentration of 65.3 mg/kg, which exceeds three times its concentration in the background sample and copper's reported mean concentration in Lyon County of 14.189 mg/kg (USGS 2006). Zinc was detected in sample 3324-28 at a concentration of 646 mg/kg, which exceeds three times its concentration in the background sample and copper's reported mean concentration of 646 mg/kg, which exceeds three times its concentration in the background sample 3324-28 at a concentration of 646 mg/kg, which exceeds three times its concentration in the background sample 3324-28 at a concentration of 646 mg/kg, which exceeds three times its concentration in the background sample 3324-28 at a concentration of 646 mg/kg, which exceeds three times its concentration in the background sample and zinc's reported mean concentration in Lyon County of 55.512 mg/kg (USGS 2006).

Several organic constituents were detected in the sediment samples; however, none of these detected constituents were reported at concentrations exceeding their respective health-based benchmarks. TPH (extractable) was detected in sediment sample 3324-28 at a concentration of 306 μ g/kg; note that TPH (purgeable) was detected in the field blank at a concentration of 11 μ g/kg. Acetone was detected in sediment sample 3324-28 at a concentration of 11 μ g/kg. Acetone was detected in the background sediment sample (3224-29) or field blank (3324-25), low-level detections of acetone are often attributed to laboratory contamination. Methylene chloride was detected in the field blank (3324-25). Because methylene chloride was detected in the field blank, the methylene chloride detections do not necessarily appear attributable to past facility operations. Xylene isomers (m and/or p-xylene) were detected in one sediment soil sample (3324-26) at an estimated concentration of 19 μ g/kg.

TABLE 4

SEDIMENT SAMPLE SUMMARY FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

EPA Sample Number	Location	Depth (ft bgs)	Sample Date	Sample Time
3324-27	From drainage feature located adjacent to Road D, which receives runoff from east portion of site.	0-1	01/17/2007	10:12
3324-28	From drainage feature located at southwest corner of the facility.	0-1	01/17/2007	10:47
3324-29	From tributary of Bluff Creek (background sample).	0-1	01/17/2007	12:26
3324-30	From drainage feature east of lagoons.	0-1	01/17/2007	09:45

Notes:

EPA U.S. Environmental Protection Agency

ft bgs Feet below ground surface

TABLE 5

ANALYTICAL DATA SUMMARY FOR SEDIMENT SAMPLES FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

Analyte		Benchmarks			Sam	ple ID and Res	ults	···· · ···
	RſD	CR	Three Times Background Concentration	3324-26	3324-27	3324-28	3324-29 BKG	3324-25 FB
			Metals (mg/kg)				•	
Arsenic	23	0.43	26.13	4.72 J	6.43 J	4.73 J	8.71 J	NA
Barium	5,500	NE	714	236	195	186	238	NA
Beryllium	160	NE	> 1.10	0.964 U	1.11	0.673 U	1,10 U	NA
Cadmium	39	NE	> 1.10	0.731 U	0.784 U	1.80	1.10 U	NA
Chromium	230	NE	69.3	22.8	23.5	20.7	23.1	NA
Copper	NE	NE	45	17.5	18.8	65.3	15.0	NA
Lead	NE	NE	73.5	17.7 J	24.6 J	71.3 J	24.5 J	NA
Mercury	23	NE	> 0.220	0.143 U	0.152 U	0.416	0.220 U	NA
Zinc	23,000	NE	141.3	58.8	57.2	646	47.1	NA
			VOCs (µg/kg)	·				
Acetone	70,000,000	NE	> 15	14 U	15 U	26	15 U	5.0 U
m and/or p-xylene	16,000,000	NE	> 7.5	19 J	7.3 U	6.4 U	7.5 U	5.0 U
Methylene chloride	4,700,000	85,000	> 7.5	7.2 U	7.3 U	6.6	7.5 U	88
	······································		TPH (µg/kg)		• • • • • • • • • • • • • • • • • • • •	*		K
Extractable TPH	NE	NE	> 99.9	97.4 U	98.5 U	306	99.9 U	10 U
Purgeable TPH	NE	NE	> 104	50 U	50 U	50 U	104 U	11

Notes:

Bold value indicates a concentration that exceeds a benchmark value.

Shaded cell indicates a concentration that exceeds three times the background concentration or the background sample detection limit.

BKG Background sample location

- CR Cancer Risk Screening Concentration from SCDM
- FB Field blank
- ID Identification

J The identification of the analyte is acceptable; reported value is an estimate

mg/kg Milligrams per kilogram

µg/kg Micrograms per kilogram

- NA Not analyzed
- NE Not established

RfD Reference Dose Screening Concentration from SCDM

SCDM Superfund Chemical Data Matrix (EPA 2004)

TPH Total petroleum hydrocarbons

U The analyte was not detected at or above the reporting limit

VOC Volatile organic compound

3.2.3 Groundwater Sampling

Table 6 shows a summary of the groundwater samples collected during the PA. Sampling locations are illustrated on Figures 2 and 3 (see Appendix A).

TABLE 6

GROUNDWATER SAMPLE SUMMARY FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

Sample ID	Approximate Location	Sample Date / Time
	Monitoring Wells	
3324-101	Unsecured, permanent monitoring well located at the facility, east of the missile coffin	01/17/2007 12:20
	Private Wells	• • • • • • • • • • • • • • • • • • •
3324-201	Private well located approximately 1.7 miles north-northwest (upgradient) of Atlas S-5	01/17/2007 15:40
3324-202	Private well located approximately 1.8 mile south-southwest (downgradient) of Atlas S-5	01/18/2007 10:35
	QA/QC Samples	• • • • • • • • • • • • • • • • • • •
3324-110-FB	Groundwater field blank sample	01/16/2007 17:15
3324-209-FB	Trip blank sample	01/18/2007 11:57

Notes:

FB	Field blank	QA	Quality assurance
ID	Identification	QC	Quality control

On January 17 and 18, 2007, groundwater samples were collected from two private water wells. The groundwater samples were collected from taps/spigots located nearest the well heads, prior to any in-home treatment systems. The well lines were purged for approximately 5 minutes before the samples were collected. A groundwater sample was also collected from an unsecured permanent monitoring well located east of the missile coffin. Prior to sampling the well, START obtained depth to water and total well depth measurements (from the top of the well housing) and documented measurements of 20.41 and 23.24 feet, respectively. Approximately 2 gallons of water was purged from the well using a disposable bailer and string before sampling the well. Because the recharge rate of the well was slow, the groundwater sample was collected over a period of approximately 24 hours.

Three deviations from the QAPP were noted. (1) No groundwater samples were collected from temporary Geoprobe[®] wells because groundwater was not present at or above the maximum achievable boring depth of 18 feet. (2) No rinsate blank was collected because no temporary Geoprobe[®] wells were

installed. (3) A groundwater sample was collected from the monitoring well located east of the missile coffin; START was not aware of this well before the sampling trip, and sampling of the well had not been included in the scope of the QAPP.

Three groundwater samples (plus two field banks) were submitted to EPA Region 7 laboratory to be analyzed for total metals, perchlorate, PCBs, TPH, SVOCs, and VOCs. Extra volume for MS/MSD analysis was collected for quality control purposes. Separate field blanks were submitted with the private well samples and the monitoring well sample. Groundwater samples collected for analysis of VOCs were collected into four 40-mL vials preserved with hydrochloric acid (HCl). The TPH-purgeables samples were collected in two unpreserved 40-mL vials. Water samples to be analyzed for PCBs, SVOCs, and TPH were collected in 128-ounce amber glass jugs (two per sample). Samples to be analyzed for perchlorate were collected in 1-liter cubitainers (one per sample). Water samples to be analyzed for metals (total) were collected in 1-liter cubitainers and preserved with nitric acid (HNO₃) to a pH <2. The groundwater sample collected from the facility monitoring well (3324-101)—to be analyzed for dissolved metals—was filtered in the field, collected in a 1-liter cubitainer, and preserved with HNO₃ to a pH <2. All water samples were stored in coolers maintained at or below 4° C pending submittal to the EPA Region 7 laboratory.

Analytical Data Summary

Perchlorate, PCBs, SVOCs, and TPH were not detected in the groundwater samples collected from the private wells or the monitoring well. Table 7 presents a summary of the metals and VOCs detected in the groundwater samples.

Antimony, arsenic, and thallium were detected in the downgradient private well sample (3323-202) at concentrations exceeding their respective health-based benchmarks. These metals were not detected in groundwater collected from the upgradient background private well (3324-201) or from the monitoring well located on the facility (3324-101). Antimony was in sample 3323-202 at a concentration of 12.7 micrograms per liter (μ g/L), which exceeds its maximum contaminant level (MCL) of 6.0 μ g/L. Arsenic was detected in sample 3324-202 at a concentration of 5.32 μ g/L, which exceeds its SCDM cancer risk screening concentration of 0.057 μ g/L, but is below its MCL of 10.0 μ g/L. Thallium was detected in downgradient private well sample 3324-202 at a concentration of 3.21 μ g/L, which exceeds its MCL of 2.0 μ g/L.

Cadmium, chromium, copper, lead, selenium, and silver were detected in private well sample 3324-202 at concentrations exceeding three times their respective concentrations in the background sample; however,

13

these metals were not detected at concentrations exceeding health-based benchmarks. Additional metals (including barium, beryllium, and zinc) were detected in the groundwater samples, but at concentrations that did not exceed their respective MCLs or SCDM health-based benchmarks.

Several organic constituents were detected in the groundwater samples. *Cis*-1,2-dichloroethene was detected in monitoring well sample 3324-101 at a concentration of 57 μ g/L, which does not exceed its MCL or SCDM screening benchmarks. Trichloroethene was detected in the monitoring well sample at a concentration of 87 μ g/L, which exceeds its MCL of 5.0 μ g/L, its SCDM cancer risk screening concentration of 7.7 μ g/L, and reference dose screening concentration of 11 μ g/L. Methylene chloride was detected in the groundwater field blank sample 3324-110, but was not detected in any other groundwater sample; therefore, the presence of methylene chloride does not appear attributable to past facility operations.

4.0 HAZARD RANKING SYSTEM FACTORS

This section discusses the sources of contamination and the contaminant migration pathways evaluated under the HRS.

4.1 SOURCES OF CONTAMINATION

The operational history of the facility is described in Section 2.3. Historical processes at Atlas S-5 likely used fuels, hydraulic fluids, solvents, oils, and lubricants. Possible sources for contamination include hydraulic systems, USTs, water treatment systems, transformers containing PCBs, surface impoundments, and maintenance activity areas. Previous USACE investigations have documented chlorinated solvents in soil and groundwater at the facility (USACE 2004). During the PA, soil, sediment, and groundwater samples were collected around the facility to assess whether a release of contaminants had occurred at Atlas S-5.

4.2 GROUNDWATER PATHWAY

This section discusses the groundwater pathway.

TABLE 7

ANALYTICAL DATA SUMMARY FOR GROUNDWATER SAMPLES FORMER ATLAS S-5, LYON COUNTY, KANSAS JANUARY 2007

Analyte		Benchmar	k Values (µ	g/L)		Samp	le ID and Res	sults (µg/L)	
	MCL	RfD	CR	Three Times Background Concentration	3324-201 (Background Private Well Sample)	3324-202 (Private Well Sample)	3324-110 (FB)	3324-209 (FB)	3324-101 (Monitoring Well Sample)
			T.	otal Metals / [Disso	lved Metals]				• · · · · · · · ·
Antimony	6.0	15	NE	> 6.00	2.00 U	12.7	2.00 U	NA	2.00 U [2.00 U]
Arsenic	10	11	0.057	> 3.00	1.00 U	5.32	1.00 U	NA	1.00 U [1.00 U]
Barium	2,000	2,600	NE	312	104	10.0 U	10.0 U	NA	57.9 [187 J]
Beryllium	4.0	73	NE	> 3.00	1.00 U	2,88	1.00 U	NÁ	1.00 U [1.00 U]
Cadmium	5.0	18	NE	> 3.00	1.00 U	3.18	1.00 U	NA	1.00 U [1.00 U]
Chromium	100	110	NE	> 6.00	2.00 U	6.33	2.00 U	NA	2.00 U [2.00 U]
Copper	1,300	NE	NE	> 14.31	4.77 U	28.8	2.00 U	NA	3.71 U [2.45 U]
Lead	15	NE	NE	> 3.00	1.00 U	7.96	1.00 U	NA	3.63 U [14.1]
Selenium	50	180	NE	> 15.00	5.00 U	15.2	5.00 U	NA	5.00 U [5.00 U]
Silver	NE	180	NE	> 3.00	1.00 U	3.12	1.00 U	NA	1.00 U [1.00 U]
Thallium	0.50	NE	NE	> 3.00	1.00 UJ	3.21	1.00 UJ	NA	[LU00 UJ [1.00UJ]
Zinc	NE	11,000	NE	63.3	21.1 J	16.8 J	2.00 UJ	NA	199 J [2.66 UJ]
				VOCs		-		· · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
cis-1,2-Dichloroethene	70	360	NE	> 1.5	0.50 U	0.50 U	1.0 U	0.50 U	57
Methylene chloride	5.0	22,000	11	> 1.5	0.50 U	0.50 U	5.3	0.50 U	1.0 U
Trichloroethene	5.0	11	0.21	> 1.5	0.50 U	0.50 U	1.0 U	0.50 U	87

Notes:

.

Bold value indicates a concentration that exceeds a benchmark value. Shaded cell indicates a concentration that exceeds three times the background concentration or the background sample detection limit.

[value]	Bracketed values indicates a dissolved metal concentration	NE	Not established
CR	Cancer Risk Screening Concentration from SCDM	RfD	Reference Dose Screening Concentration from SCDM
FB	Field blank	SCDM	Superfund Chemical Data Matrix (EPA 2004)
ID	Identification	U	The analyte was not detected at or above the reporting limit
J	The identification of the analyte is acceptable; reported value is an estimate	UJ	The analyte was not detected at or above the reporting limit.
µg/L	Micrograms per liter		The reporting limit is an estimate
NA	Not analyzed	VOC	Volatile organic compound

4.2.1 Hydrogeological Setting

The U.S. Department of Agriculture (USDA) has classified the soil in the area of the Atlas S-5 facility as the Tully-Florence Association. This soil type consists of deep, gently sloping and strongly sloping, welldrained soils on uplands that have a dominantly silty clay or cherty clay subsoil. The underlying formation consists of cherty limestone (USDA 1981). Depth to groundwater has reportedly been encountered at the site at 18 feet bgs (EPA 1997). Private wells in the vicinity of the facility likely draw groundwater from perched or alluvial valley aquifers. Review of topographic maps indicates that the general topographic gradient in the area of the facility is toward the south; therefore, groundwater may flow south (USGS 1971).

4.2.2 Groundwater Targets

Review of aerial photography indicates that the facility is situated in a rural agricultural area. The closest residence appears to be located 0.8 mile from Atlas S-5 (USGS 1991). According to the 2000 Census data, approximately three people live within 0.5 mile of the facility (Missouri Census Data Center 2000). The population within 4 miles of the facility is approximately 86 people. According to the Kansas Geological Society (KGS), five domestic wells and one well with an unspecified use are registered within 4 miles of the facility. The registered well identified closest to the facility is located approximately 0.75 mile southeast of the site (Figure 4, Appendix A) (KGS 2007). (This well was not sampled during the PA and is considered to be cross-gradient relative to groundwater flow from the site.) Note that starting in the mid-1970s, wells had to be registered with the State of Kansas (Kansas Department of Health and Environment [KDHE] 2007); therefore, unregistered wells constructed prior to the mid-1970s could be located within 4 miles of the facility. According to the EPA Safe Drinking Water Information System (SDWIS), the primary source of water for Lyon County's rural water districts is purchased surface water (EPA 2007c). The owner of the downgradient private well that was sampled during the PA indicated that water from the private well is rarely used for drinking water. The owner indicated that his residence is served by the local rural water district.

4.2.3 Groundwater Pathway Conclusions

Antimony, arsenic, and thallium were detected in the groundwater sample (3324-202) collected from a private well located downgradient of the facility. Antimony was detected at a concentration of 12.7 μ g/L, which exceeds its MCL of 6.0 μ g/L; arsenic was detected at a concentration of 5.32 μ g/L, which exceeds its SCDM cancer risk concentration of 0.057 μ g/L; and thallium was detected at 3.21 μ g/L, which exceeds its MCL of 2.0 μ g/L. Although these metals were not detected in the other groundwater samples

collected (including the background groundwater sample), the presence of these metals in sample 3324-202 may be attributable to naturally occurring conditions. The owner of the private well, where groundwater sample 3324-202 was collected, indicated that this well was rarely used as a drinking water source.

Perchlorate, PCBs, SVOCs, and TPH were not detected in the groundwater samples collected from the private wells or the monitoring well. *Cis*-1,2-dichloroethene and trichloroethene were detected in a groundwater sample (3324-101) collected from a permanent monitoring well located on the facility, east of the missile coffin. Detections of *cis*-1,2-dichloroethene and trichlorethene in the groundwater sample are likely associated with a past release of chlorinated solvents at the facility. Previous groundwater sampling conducted by the USACE also identified both trichloroethene and 1,2-dichloroethene in groundwater samples collected from the facility (EPA 1997). No VOCs were detected in the groundwater samples collected from the facility (EPA 1997). No VOCs were detected in the groundwater samples collected from private wells located upgradient and downgradient of the facility. Although the PA did not detect VOCs in samples from two private wells, groundwater downgradient of the site is vulnerable to VOC contamination from the former DoD activities.

4.3 SURFACE WATER PATHWAY

Stormwater runoff from the facility appears to enter two intermittent streams located approximately 0.25 mile south of the site and 0.25 mile east-northeast of the site. These intermittent streams drain to the south and join Bluff Creek at a point approximately 1 mile south of the site. Further downstream, Bluff Creek drains into Rock Creek (USGS 1971). The KDHE has classified Bluff Creek and Rock Creek as general purpose streams with designated use for food procurement (KDHE 2004). These streams have not been designated for use as a domestic water supply. No known drinking water intakes, fisheries, or sensitive environments are known to occur within 15 miles downstream of the facility.

During the January 2007 PA sampling event, no surface water was visible on or near the facility, and therefore no surface water sampling was conducted. However, three sediment samples collected from facility drainage features and one background sediment sample were collected during the January 2007 sampling event. Low levels of VOCs and TPH were detected in the sediment samples; however, the detected concentrations were below health-based benchmarks. Several metals were detected in the sediment samples; however, except for arsenic, the detected concentrations were below health-based benchmarks. Based on the background sample results, the arsenic detections appear to be naturally occurring. Because of dilution effects, it is unlikely that the low levels of VOCs, TPH, and metals in

1. シ

17

sediment near the facility could impact unidentified drinking water intakes, fisheries, or sensitive environments located downstream of the facility.

4.4 SOIL EXPOSURE AND AIR PATHWAYS

The fenced missile compound is not currently used for any purpose, and the remainder of the site is used for pasture land. Concrete structures from former DoD activities still exist on site. No one lives or works at the site, and access to the site is restricted. Population near the site is sparse. No sensitive terrestrial environments are known to occur at the site. Arsenic was detected in all but one of the soil samples collected during the January 2007 sampling event at levels exceeding its SCDM cancer risk screening concentration. However, when compared to average concentrations of arsenic for Lyon County, Kansas, the values identified are believed to be naturally occurring (USGS 2006). Low levels of VOCs (including benzene and xylene isomers) and TPH were detected in soils samples collected from the facility; however, none of these constituents were detected at concentrations exceeding its respective health-based benchmarks. Based on the results of soil samples collected from the site, on-site soil contamination found during the PA presents a minimal threat to the soil and air exposure pathways.

5.0 EMERGENCY RESPONSE CONSIDERATIONS

The National Contingency Plan [40 CFR 300.415(b) (2)] authorizes the EPA to consider emergency response actions at those facilities that pose an imminent threat to human health or the environment. For the following reasons, a referral to EPA Region 7 for emergency response activities does not appear necessary:

- Although *cis*-1,2-dichloroethene and trichloroethene were detected in a groundwater sample (3324-101) that was collected from a permanent monitoring well located on the facility, no VOCs were detected in the groundwater samples collected from private wells located in the vicinity of the facility. Furthermore, based on interviews with the owners of the sampled private wells and based on the EPA SDWIS database, groundwater in the vicinity of the facility is not generally used for drinking water.
- Arsenic was detected in soil and sediment samples at levels that exceeded health-based benchmarks. Other metals were detected in soil and sediment samples, but at levels that did not exceed health-based benchmarks. Although various metals were detected in soil and sediment samples, the metals concentrations identified in the soil and sediment samples were all similar to background concentrations.
- Benzene and isomers of xylene were detected in soil and sediment samples collected from the facility at concentrations that did not exceed health-based benchmarks. These contaminants are commonly associated with releases of petroleum hydrocarbons.

• Antimony, arsenic, and thallium were detected in the groundwater sample (3324-202) collected from a private well located downgradient of the facility at concentrations that exceed health-based benchmarks; however, these detections may be naturally occurring. The owner of the private well indicated that this well was rarely used as a drinking water source.

Although emergency response actions do not appear warranted, additional sampling is recommended for EPA consideration. The detection of *cis*-1,2-dichloroethene and trichloroethene in groundwater during the PA sampling may warrant additional groundwater sampling to ensure that these contaminants are not persisting in the aquifer and potentially impacting nearby private water wells.

6.0 SUMMARY

The former Atlas S-5 facility is located in Lyon County, Kansas, approximately 8 miles west-northwest of Allen, Kansas. The facility is situated in a rural agricultural area. The DoD acquired 25 acres in fee and 236 acres in easements between 1960 and 1963 to house an Atlas E-Type ICBM in connection with the Forbes Air Force Base in Topeka, Kansas. The facility operated from 1961 until 1965, when it was decommissioned. In 1965, the facility was reported as excess and was subsequently sold (USACE 1993). Previous USACE investigations have documented chlorinated solvents in soil and groundwater at the facility (USACE 2004).

Analytical results from samples collected during the PA sampling event indicate that an observed release of contaminants associated with Atlas S-5 had occurred. Low levels of benzene were detected in soil samples and low levels of xylene isomers were detected in sediment samples collected from the facility. These contaminants are commonly associated with releases of petroleum hydrocarbons. The detection of *cis*-1,2-dichloroethene and trichloroethene in a groundwater sample from the site indicate that a release of chlorinated solvents at the facility likely occurred. Other contaminants were detected in samples collected during the PA; however, these contaminants do not necessarily appear attributable to past operations at Atlas S-5.

The pertinent HRS factors associated with Atlas S-5 are as follows:

• A release of contaminants from Atlas S-5 has been established based on the results of the January 2007 PA sampling effort. The detection of *cis*-1,2-dichloroethene and trichloroethene in groundwater and the detection of benzene and xylene in soil and sediment samples from the facility appear attributable to past operations at Atlas S-5. Of these compounds, only trichloroethene was detected at a concentration exceeding health-based benchmarks.

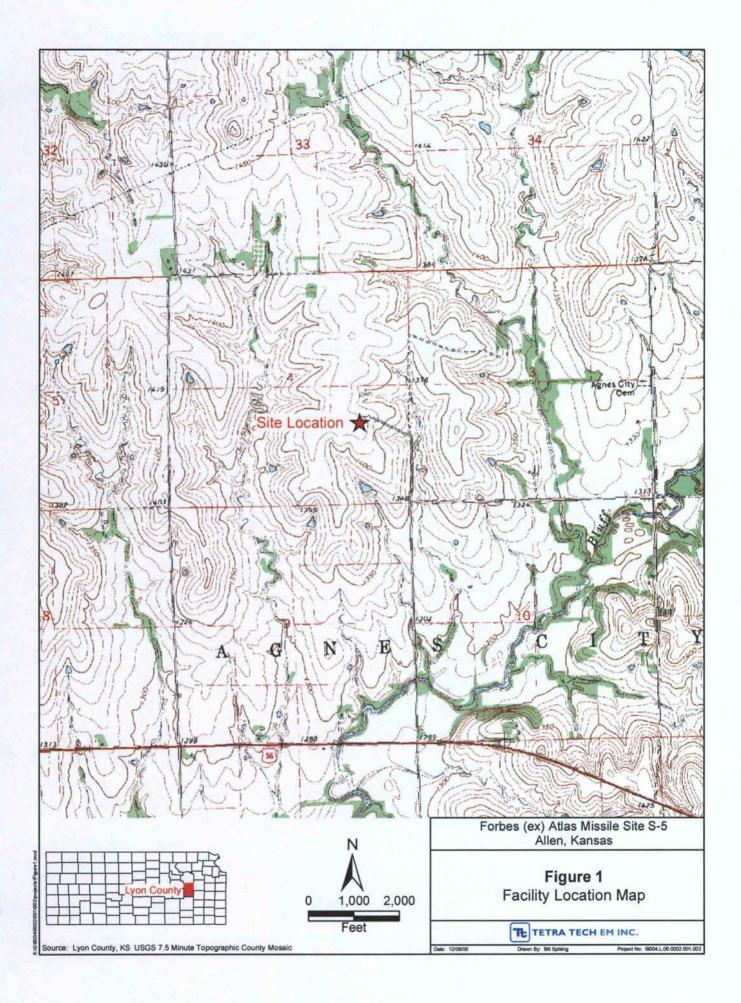
- Although *cis*-1,2-dichloroetehene and trichloroethene were detected in a groundwater sample (3324-101) that was collected from a permanent monitoring well located on the facility, no VOCs were detected in the groundwater samples collected from private wells located in the vicinity of the facility.
- Arsenic was detected in soil and sediment samples at levels that exceeded health-based benchmarks. The arsenic levels detected in the soil and sediment samples were similar to average arsenic levels reported for Lyon County by USGS. Other metals were detected in soil and sediment samples, but at levels that did not exceed health-based benchmarks. Although various metals were detected in soil and sediment samples, the metals concentrations identified in the soil and sediment samples were all similar to naturally occurring levels.
- Antimony, arsenic, and thallium were detected in the groundwater sample (3324-202) collected from a private well located downgradient of the facility at concentrations that exceeded health-based benchmarks; however, these detections may be naturally occurring. The owner of the private well indicated that this well was rarely used as a drinking water source.
- No fisheries or sensitive environments associated with the surface water pathway are within 15 miles downstream of the facility.
- None of the soil samples exceeded a SVOC, VOC, PCB, TPH or perchlorate health-based benchmark.

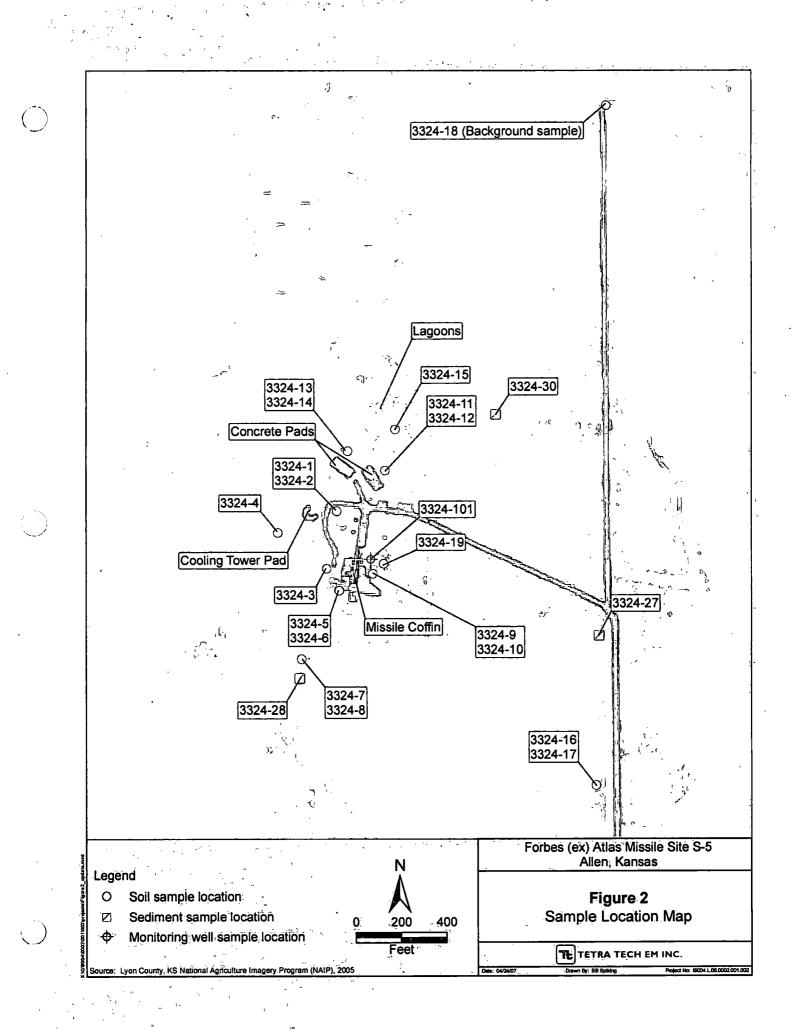
7.0 REFERENCES

- Agency for Toxic Substance and Disease Registry. 2007. ToxFAQs[™] for Carbon Disulfide. Accessed on May 17, 2007. On-line address: <u>http://www.atsdr.cdc.gov/tfacts82.html</u>
- Kansas Department of Health and Enviroment (KDHE). 2004. Kansas Surface Water Register. November 5.
- KDHE. 2007. Telephone conversation regarding date when registering wells was required in the State of Kansas. Between Richard Harper, KDHE, and Dave Zimmermann, Tetra Tech..
- Kansas Geological Survey (KGS). 2007. Registered well data for the State of Kansas. On-line address: <u>http://abyss.kgs.ku.edu/pls/abyss/wwc5.wwc5d2.mainQuery</u>
- Missouri Census Data Center. 2000. MABLE/Geocorr2K: Geographic Correspondence Engine with Census 2000 Geography. Version 1.3. Accessed on May 8, 2007. On-line address: http://mcdc2.missouri.edu/websas/geocorr2k.html
- Tetra Tech EM Inc. (Tetra Tech). 2006. Quality Assurance Project Plan (QAPP) Forbes (ex) Atlas Missile Site S-5, Allen, Kansas. December 18.
- U.S. Army Corps of Engineers (USACE). 1993. Defense Environmental Restoration Program Formerly Used Defense Sites Program Findings and Determination of Eligibility, Former Forbes AFB, Facility S-5. Site No. B07KS020400. Forbes Atlas Missile Base S-5. April 5.
- USACE. 2004. Letter regarding assistance with the Forbes Atlas Missile Base S-5. From William Zaner, USACE. To Mr. Ronald King, U.S. Environmental Protection Agency (EPA) Region 7. December 20.
- U.S. Department of Agriculture (USDA), Soil Conservation Service. 1981. Soil Survey of Lyon County, Kansas. May.
- U.S. Environmental Protection Agency (EPA). 1997. Superfund Records. Site Summary for Forbes (ex) Atlas Fac S-5. Updated September 15.
- EPA. 2004. Superfund Chemical Data Matrix (SCDM) Table. Washington, D.C. January.
- EPA. 2006. Consumer Factsheet on: Di (2-ethylhexyl) phthalate. Accessed on April 23, 2007. On-line address: http://www.epa.gov/safewater/dwh/c-soc/phthalat.html
- EPA. 2007a. Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) database. Accessed on May 8, 2007. Last updated on November 28, 2006. On-line address: <u>http://oaspub.epa.gov/enviro/cerclis_web.report?pgm_sys_id=KSSFN0703129</u>
- EPA 2007b. Resource Conservation and Recovery Act (RCRA) database. Accessed on May 2, 2007. Last updated on June 8, 2006. On-line address: <u>http://www.cpa.gov/enviro/html/rcris-</u> <u>query_java.html</u>
- EPA. 2007c. Safe Drinking Water Information System (SDWIS). List of water systems for Lyon County, Kansas. On-line address: <u>http://www.epa.gov/enviro/html/sdwis/sdwis_query.html</u>

REFERENCES (Continued)

- United States Geological Survey (USGS). 1971. 7.5 minute topographic map, Bushong, Kansas Quadrangle.
- USGS. 1991. Aerial photograph, Allen, Kansas. Available on-line via teraserver.microsoft.com. Accessed on October 14, 2006.
- USGS. 2006. Average concentration of elements in Lyon County Kansas. On-line address: http://tin.er.usgs.gov/geochem/county.php?place=f20111&el=As&rf=central

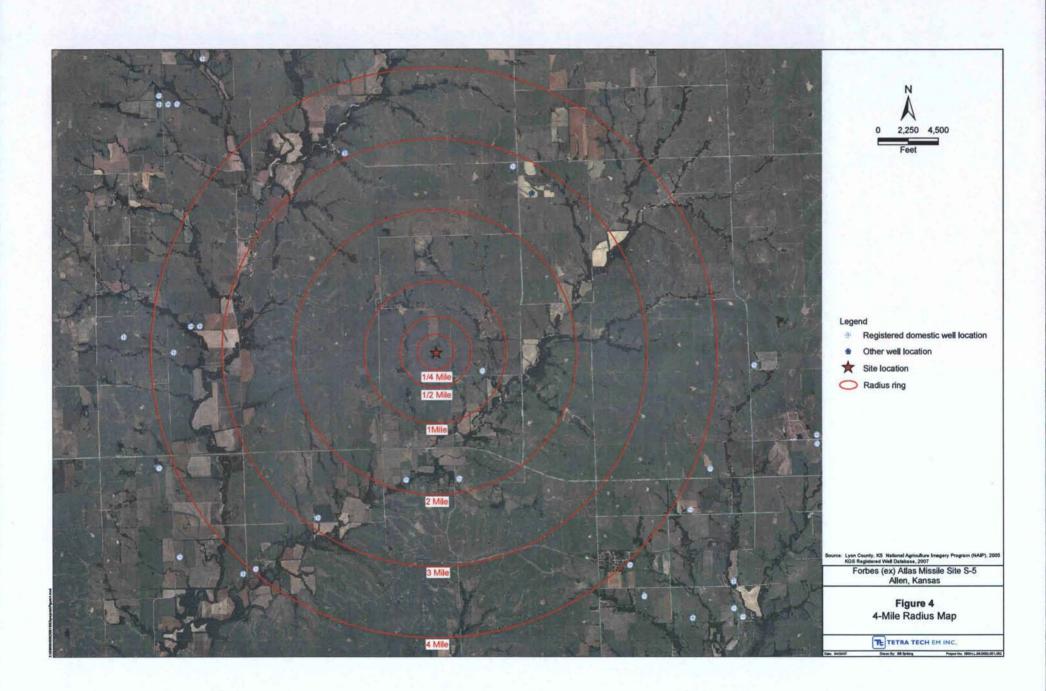

(


:

APPENDIX A

FIGURES

v77.

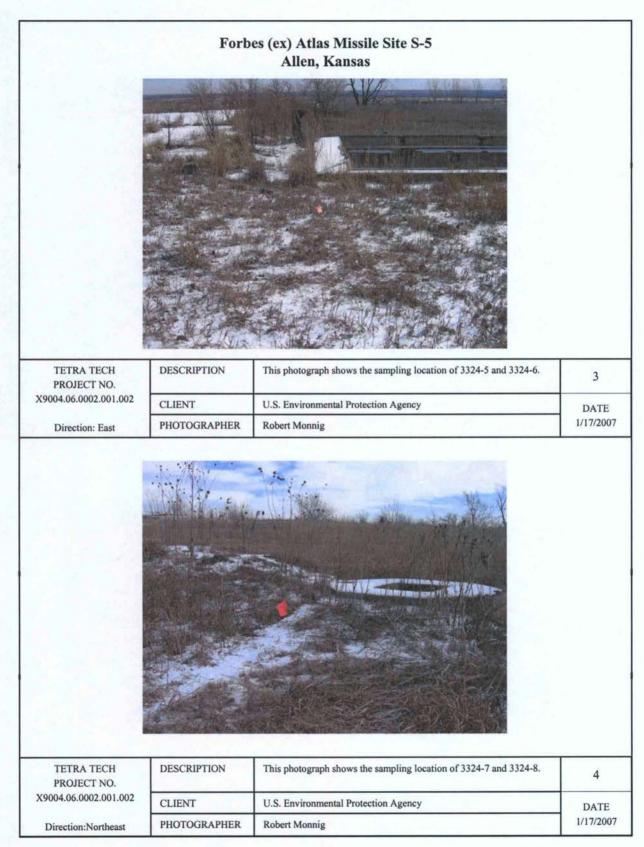


 \bigcirc

()

APPENDIX B

-t


. `

•

•.

PHOTOGRAPHIC LOG

TETRA TECH PROJECT NO. X9004.06.0002.001.002 DESCRIP Direction: Southeast PHOTOO	U.S. Env	ormental Protection Agency Danig	DATE
PROJECT NO. X9004.06.0002.001.002 CLIENT	U.S. Env	ronmental Protection Agency	DATE
PROJECT NO. X9004.06.0002.001.002 CLIENT	U.S. Env	ronmental Protection Agency	DATE
CLIENT			DATE 1/17/2001
Direction: Southeast PHOTOG	RAPHER Robert N	onnig	1/17/200
TETRA TECH DESCRIP PROJECT NO.			
X9004.06.0002.001.002 CLIENT Direction: East PHOTOG		ograph shows the sampling location of 3324-3.	2

Forbes (ex) Atlas Missile Site S-5 Allen, Kansas					
	H				
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-9 and 3324-10.	5		
X9004.06.0002.001.002 Direction: West	CLIENT PHOTOGRAPHER	U.S. Environmental Protection Agency Robert Monnig	DATE 1/17/200		
TETRA TECH PROJECT NO. X9004.06.0002.001.002	DESCRIPTION	This photograph shows the sampling location of 3324-13 and 3324-14. U.S. Environmental Protection Agency	6		

	Forb	es (ex) Atlas Missile Site S-5 Allen, Kansas	
TETRA TECH PROJECT NO. X9004.06.0002.001.002 Direction: West	DESCRIPTION	This photograph shows the sampling location of 3324-15.	7
	CLIENT	U.S. Environmental Protection Agency	DATE 1/17/200
	PHOTOGRAPHER	Robert Monnig	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-18 (background).	8
	DESCRIPTION	This photograph shows the sampling location of 3324-18 (background). U.S. Environmental Protection Agency	8 DATE 1/16/200

	Forb	es (ex) Atlas Missile Site S-5 Allen, Kansas	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-27.	
X9004.06.0002.001.002	CLIENT	U.S. Environmental Protection Agency	
			-
Direction: West	PHOTOGRAPHER	Robert Monnig	
Direction: West			
TETRA TECH PROJECT NO.	PHOTOGRAPHER	Robert Monnig Image: Contrast of the synthesis of the synthesynthesis of the synthesynthesis of the synthesis of the synthesynth	1/
TETRA TECH	PHOTOGRAPHER	Robert Monnig	

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-29 (background).	
X9004.06.0002.001.002	CLIENT	U.S. Environmental Protection Agency	
Direction: East	PHOTOGRAPHER	Robert Monnig	D/ 1/17

	Forb	es (ex) Atlas Missile Site S-5 Allen, Kansas	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-101.	11
X9004.06.0002.001.002	CLIENT	U.S. Environmental Protection Agency	DAT
Direction: West	PHOTOGRAPHER	Robert Monnig	1/17/20
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the sampling location of 3324-19.	12
	DESCRIPTION CLIENT PHOTOGRAPHER	This photograph shows the sampling location of 3324-19. U.S. Environmental Protection Agency Robert Monnig	12 DAT 1/18/20

APPENDIX C

FIELD LOGBOOK

KS 807 ALL-WEATHER WRITING PAPER LEVEL All-Weather Notebook No. 311 Forbes (E.) Atlas Missile Sile 55 PA Sampling 4 s/8" x 7" - 48 Numbered Pages . . .

2 31/15/67	E	ocher 1	Aflas.			_01/15/07		Forbes	AHas		3
0900	R. Montia,	0. N:	lians, an		(START))		plc 3324	-s al si	3-04
//-	leave Ion	exa off	ce for	ste.			from 0	2. <u>bas.</u>	3314-1	-1 30 -	
/(30	Arrive on solithy pl			or Vegin	arg				3324-6 Prode hits		
1700	Greet For				<u> </u>	1825			samples a		
	Setur For	-	wng.						.		
1340	Begin bbr	ing S	8-01								
ાપ્ભ	Collect s										
	at 12-2			3	mtrol			<u> </u>			
	Collect :				50.01		X				
1214	at 16-18	201 JULY	nyre 30 rohe hite	refusal a	n hard			A.	Ŀ		
	Juny at 1	8' bas.						0			
1545	Move to	locatio	n 58-0	22 Jorah	west of	-		15			
	CORCIN .									<u> </u>	
1600	Collect 5	oil Sam	12 3324	-3 trom	3.02		 	· ·	6/1		
	at 0.2' rock at							·		<u></u>	
1637	Move to					· · · · · · · · · · · · · · · · · · ·					
	west fem	celine.	:								
العلال	Collect sa	il same	2 3324-	4 From	58-03	·					
	2 2.4					<u>.</u>	ļ	·			∖ [§
1710			50.04	localed	southwest		<u> </u>	· · · · ·			
	Merim 20	e coltin		<u> .</u>		(<u> </u>	<u>-</u> -		<u> </u>		┝──╲──

. . . :

.

.

. . . .

÷.

400 -	01/14/07		·orbes	Atlas .			01/17/07		Forbas	AHas		5	
	0800	Leave hat	el For	s;h.		•	0800	Come h			Do returns	1 10000	-
	0920	Arrive at	site.	Setup G	esprobe .	on location	0945	Arrive	on sile (Stan locat	ing sudim		-
		58-05 at	south	Gines M	er drain	age	<u>.</u>	location	5.	3	8	Ţ	-00
	. <u> </u>	feature.					0945	Collect	e sedmen	tamote	3324-30	From	-
		Collect Su		de 332	4-7 2	t 58-05	×	lecation	SEDOL	located	within dra	made.	
-		from o.		ļ	<u> </u>		·	Essture	east of	agoons_	Dranage	0	-
·	/013	Collect S.					·	Fratures	is day.	0			
						<u>1 at 11' bas.</u>				sample_	3324-27	from	
	r	More to 1.		38.06	lorated.	east of	· .	location	5 <u>6</u> 0-0	2 locates	d within dr	inage	
		Missile C				· · · · · · · ·	·	Frahme	the re	ceives a	unate from	· ·	
	1042	Collect 50		<u>le 3324</u>	9 at s	58-06		tast pa	thon at	sile_ Dra	in age . Frat	<u>a</u>	
		From 0-7		·				is dry-			· · · ·	·····	-
		Collect so									324-28 50		
						sail at 12 bas.					within dra		
inani T		Lense site		•							ner of site	· · · · ·	
Teresetter T		Pack samp					1 I		F	amples co	1 1	<u> </u>	L.
		Ship some	pes va	TLOEX.	 						Mourtmine		
		Return to.	~ 14	< <u></u>							Coffin.		
aner.		(ocalada	SIR.	tope of	de Sightma	M Saupla					on top of		
- Tati	1395		Rem C		3311-11 6	hrmath 3324-15		New Sing	T-hal	depth is a	23.24 ft.	Kurged	
1.		(see Sie			700 (ta			A OFTOXET	hely do	<u>jailors be</u>	fore Somp	ng the	
						<u>wr 5.8.</u>		-		ais 2"	í I	<u>, </u>	
		0/			>					1 '	well Con	10	
			4/07	Z			· · · · · · · · · · · · · · · · · · ·	LAT CANCE	More du	to slow	recharge_		
			.	1									
			•										

•

۰.

: :

.

.

.

ŀ.

. ÷

:. ·-

.....

. . .

. ...

£ *

• •

.

:

· · · · · ·

۰.

	-	2115021annanie			nachaeonan an tar an tar	
6				İ	4	: [
or/17/	67	Ears	s RHas		ļ	-
1220	wall is to					_
	Collect s		-	24-29 6	1	_
	/acation					-
1240	Leave for			w to 14	nch sha	
	at Davis			1	1 .	.
	access A	samoli	water.	Neither (esidence	_
	is home					
1400	Return Fi	on lan	ch and	drive by	and knock	.
	on Noor		1			- 1
	Noither :					-
/41<	Pock som			hora	Meded	-
/	today.	Y				-
1500	Arrie at	Buller	m.s:ebac	to col	lect inchan	-
	groundy					•
	home an		1 Decetion	in to	Samele	-
	wel A	ailma a	Notes is	329 R	ad 370,	-
	Council	(vrne	Ke lol	846.	<u>,</u>	-
(540	Callect	arning.	der / No	aken and	r) sample	
	3324-2	y for	D. Dala	- acuala	well.	-
	Collecter					-
1620	Leave f	the of	Spiger C	hall		- }
		<u> 44.1193</u>	SAUCEE_10		<u> </u>	-
						-
		0/1				-
· · · · · · · · · ·			07			-
				\leftarrow	+	
					(Section of the sect	
· · · · · ·						

					1		en esta esta esta esta esta esta esta esta
	1					7	
	1		h	ļ		· [
61/19/07		Forbes /	4/as		<u> </u>	į:	
40-			•	{	l	Ľ.	
073	Leare	here I for	S.H.	·			
1-0-0	Anne a	1 Maria		and the		10.00	
	TTITLE A		C			—-[
	Towner	anes d	in Sin	to collec	ł		
		· · · ·		f			
	Couking	unter si	mele	Address is	\$	į	
						5	
	334 12	hung 54	, Council	Gron, KS	GUATO.	<u>ę</u>	
	Land .	المامعة ا	d a caus	1985	2.		
) [· ·	1 .		
	& ADra laver	all 23	A the	and is l	caled	jî.	
·	1 1 1 1		•				
	South of	res des	CL ARE	creek. V	later_	<u></u>	
	1 1			1			
	from w	uis rar	ry used	for dem	King .	Ì	
			is h.	no inste			
~ <u></u>						[;	
1030	A fler	elling is	aler run	for 5 mill	ules	0.000	
						Cine.	
	analyzed	Water	v:# KS	1 Mekr.			
	1 m	7 ~ 9 ° C.	a salu	- all -	9		
	1 mp -	.0,0,0	Cong-0	<u>, ρΗ +</u> -	<u>*</u>		
	ORP = 4	.2				ġ.	
			,				
035	Collect	ohinking !	water so	mple 33	<u>14.202</u>	<u>s</u>	
1		0	marking		ł .		
_/0.5.			residence		 -	<u> </u>	
10 52	Am	at Days	residen	ce. Om	her	i.	
						Ē	
<u> </u>	Cass An	k marat	us to s	ample. L	ave	<u> </u>	
				*			
	Davis_6	esidence.		ļ			
1105	Dolin	L cita I	A.	And us	La	1	
					i	fi	
	from a	nsite m	anitoring.	well.			
		1		1 no .	-		
1107	Pack 5	ail field	blast S	<u>24-25- F</u>	<u>p</u>		
1157	C.M.J	when I	id limb	Packup	l n		
[1 - 3 - 1	1· ·						
	San-ple	s	<u> </u>				
				1			
					1	ţ.	

.

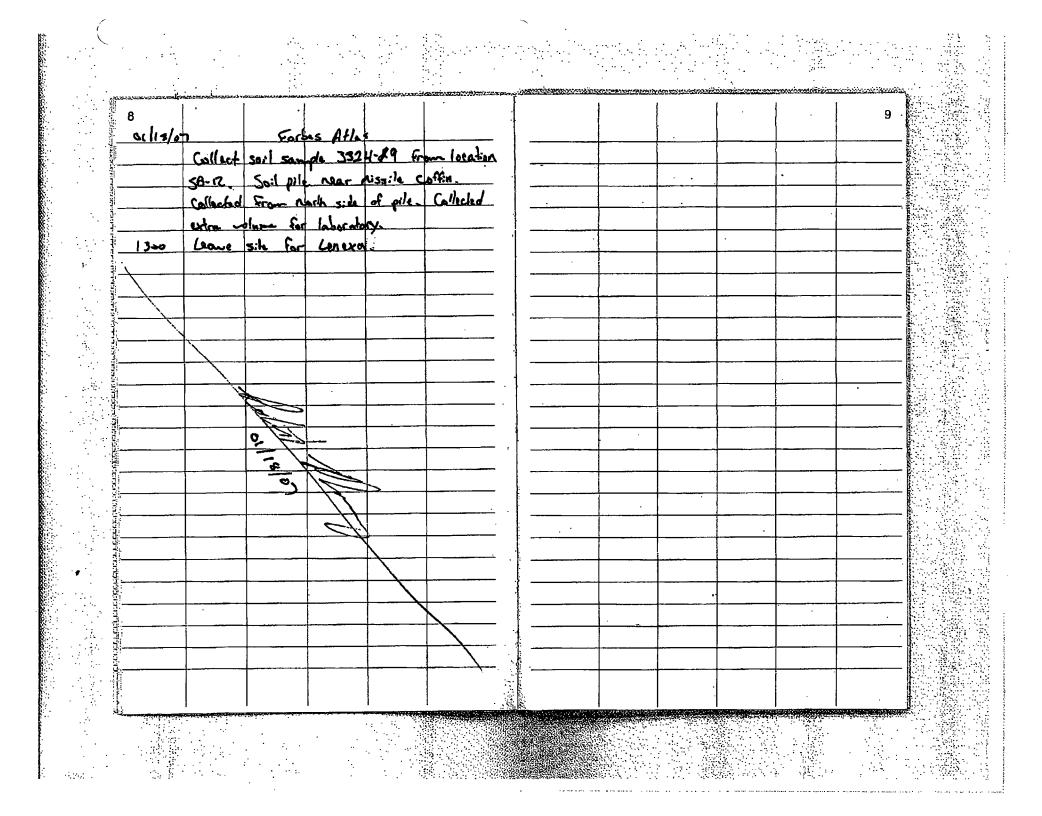
•.

·, -

. :

. . .

• ...


÷

.....

<u>::</u>-

.

and a start in strain or

APPENDIX D

· 11/

~,* *

FIELD SHEETS AND CHAIN-OF-CUSTOD Y RECORDS

Project ID: PRF	EXAMS5	Project Manage	er: Paul Roemern	nan
		Site S-5 - PA sampling		
City: Aller		Sta	te: Kansas	
Program: Sup			Site 10 , 077	Z Site OU: 00
Site Name: Mult	i-Site - General		Sile 10: 0/2	2 Sile 00: 00
Location Desc: Soi	l sample			_
		External Sample Number:	58-01	0-2 ft
Expected Conc:	(or Circle One:	: 😡 Medium High)	Date	Time(24 hr)
Latitude:		Sample Collection: Star	t: 01/15/07	14:15
Longitude:		•	1: 01/15/07	14:53
Laboratory Analys	es:			
Container	Preservative	Holding Time Analysis	 · ·	
2 - 40mL VOA vial Pourhad	4 Deg C	•	s in Soil by GC/MS	MC Closed Country
2 - 40mL VOA vial [preserved/tared]	4 Deg C, H2O + sodium bisulfate (in vial)	14 Days 1 VOC's in So -Purge-and	il at Low Levels by GC Frap	/MS Closed-System
1-8-oz-glass	-4-Deg E		Soil or Sediment	-
1 - 8 oz glass	4 Deg C		plids by ICP and Me	rewry
r = 8 oz glass	4 Deg C		In Soli by iC	s in Soil and Section
1 - 8 oz glass	4 Deg C	14 Days 1 Semi-Volati		S IN DOIL COMPLET STORING
18 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	14 Days 1 TPH Semi-V	olatile in Soil by GC/F	ID and Parchlorato.
2-40 ml Vok	4 Deg C	0 Days 1 Percent Soli		
Packet				<u> </u>
Sample Comments: (N/A) Near Con Collected	trol center an extra volum	d bend in road.	Sampled from	m 0-2' bg 5.
Depth	Description	the sector so		
	Lt gray cla	y, with some Norker soi	•	
0-7	51			
2-18	U. gray ha	rd clay		
2-18	U. gray ha	hard clay /rock.		•

Sample Collected By: RM

Design TD. DD	CEVAMOE		n	niget M-		Baul Boom		·····
Project ID: PR	rbes (EX) Atlas Missile	Sita S-5		•	nager	Paul Roem	ermar	ł
City: All	• •	Site 3-2		amping	State	Kansas		
Program: Su								
Site Name: Mu	lti-Site - General					Site ID: ()7ZZ	Site OU: 00
Location Desc: So	•							
	1	Externa	al Sam	pie Num	ber: _	56-01	16	0-18
Expected Conc:	(or Circle One:	\sim				Date		Time(24 hr)
Latitude:		Samp	ole Col	lection:	Start:	01/15/07	7	15:14
Longitude:					End:			
Laboratory Analy	ses:		. <u> </u>		<u> </u>			
Container	Preservative	Holding				- Call by CC/M	IC	
2 - 40mL VOA vial 2 - 40mL VOA vial	4 Deg C 4 Deg C, H2O + sodium	· 14 14	Days Days			n Soil by GC/M It Low Levels b		S Closed-System
(preserved/tared)	bisulfate (in vial)	28	Days	Purge	and-Tra			
1 - 8 oz glass	4 Deg C	180	Days			s by ICP and		ency
1-8 oz glass	-4-Beg C	28_	_Days_		orate in	Soll by IG		, A Pro
1 - 8 oz glass	4 Deg C	14	Days				ounds in	soil and PCBs
-18 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	14 14	- Days - Days	1 TPH S		itile in Soll by (GC/FID	
0- 2-40mL VOA	4 Deg C	0	Days	1 Percen				
Compare Company	21			<u>.</u>				. <u></u>
					1		1.	
(N/A)	with 3324-1	$\mathcal{N}_{\mathbf{e}}$	ar cr	nhol c	Lnter	and ben	d in	L (90%) ~
Collocated	with JJC4		•		. 1	1 (a 3
Sampled	with 3324-1 from 16-18	í bg:	5, 1	Geopro	be h	t retuse	() e:	n hard
clay at	18 bas.							
•				•				
·								
				,				

Sample Collected By: RM

.....

ASR Number: 332	4 Sample Number	3	QC Co	ode: M	latrix: Solid	Tag ID: 3324-3
City: All Program: Su	rbes (EX) Atlas Missile en	Site S-		ampling	ger: Paul Roem ate: Kansas Site ID: (nerman 07ZZ Site OU: 00
Location Desc: So	oil sample			<u>_</u>		
	ł	Extern	al Sam	ple Number	: <u>SB-0</u> 2	2 0-2'
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:	·····	Sam	ple Col	lection: Sta	rt: 01/15/07	16:00
Longitude:				En	d: _/_/	_:
Laboratory Analy Container	ses: Preservative	Holdin	n Time	Analysis	· · · · ·	······
2 - 40mL VOA vial	4 Deg C	14	Days	-	les in Soil by GC/M	S
2 40mL VOA vial (preserved/tared) <u>1 8 oz.glass</u>	4 Deg C, H2O + sodium bisulfate (in vial)	14 28 _	Days	1 VOC's in S Purge-and	oil at Low Levels by	y GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days		iolids by ICP	Mercury
-1-8-02 gloss				-1 Perchlorate	: In Soil by IG	•
1 - 8 oz glass	4 Deg C	14	Days			unds in Soil and PCB3
<u>1 8 oz glass</u>	- 4 Deg C		Days			
1 - 8 oz glass 0 - 2 - 40 m-VOA	4 Deg C 4 Deg C	14 0	Days Days	1 PH Semi-	Volatile in Soil by 0 Iid	sC/FID
Sample Comments					<u> </u>	<u> </u>
		-	_		N C	
(N/A)	Missile caffin. 6 ft bys on m	San	plu Fi	em Ord	H Lgs. (-coprobe hit
refusal at	6 libgs on re	ck.	0:1	not Senpl	e at 4-6	It bas the
to insignifin	ant difference in	depth	and	Similor (1	the logy.	
(Depth Descrip	-01				
	0-2 Brn, cle	y, w.*	h rocl			
	2-4 Lt-brow	sn c	lay w	th rock,		
	Geoprobe kit	_				
Sample Collected	• •		-			

ASR Number:	3324 Sample Numbe	e r: 4	QC Co	de: Mat	rix: Solid	Tag ID: 3324-4
Project ID: Project Desc:	PRFEXAMS5 Forbes (EX) Atlas Missil	e Site S-		oject Manager	: Paul Roeme	erman
City;				-	: Kansas	
Program:						
Site Name:	Multi-Site - General				Site ID: 0	7ZZ Site OU: 00
Location Desc:	Soil sample			· · ·		aut
		Extern	al Sam	ple Number:	212-03	d-4
Expected Conc	or Circle One				Date	Time(24 hr)
Latitude:		Sam	ple Col	lection: Start:	01/15/67	14 46
Longitude:	<u> </u>			End:		
Laboratory An	alyses:				· · · · · · · · · · · · · · · · · · ·	
Container	Preservative	Holding	g Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles i	n Soil by GC/MS	;
2 - 40mL VOA vial (preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	ı 14	Days			GC/MS Closed-System
1 8 oz glass		28_		Purge-and-Tra <u>1-Morcury In-Sol</u>	Lor Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	ls by ICP and the	scury
1-8-oz glass	4-Deg C		-Days-			•
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	Organic Compou	nds in Soil and PCBs
1 - 8 oz glass			- Dayş		r -GE/E C	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vola	tile in Soil by G	C/FID
-40ml VOAs	4 Deg C	0	Days	1 Percent Solid		
Sample Comme	nts:			· · · · ·		· · · · · · · · · · · · · · · · · · ·
(N/A) Along	collected from	Ceopro	.6 hi	t refusal a	t 4 ft bg	5、
Sample	Collected from	2-4 4	bgs.			

Sample Collected By: RM

Project ID: P			roject Manager	: Paul Roemern	nan
City: A	orbes (EX) Atlas Missile llen	Site S-5 - PA		: Kansas	
Program: S			State	· Kunsus	
Site Name: M	lulti-Site - General			Site ID: 07Z	Z Site OU: 00
Location Desc:	Soil sample	·		<u> </u>	
		External Sam	pie Number:	56-04 0	<u>b-2</u>
Expected Conc:	(or Circle One:	Low Mediur	n High)	Date	Time(24 hr)
Latitude:		Sample Col	llection: Start:	01/15/07	120
Longitude: _	· · · · · · · · · · · · · · · · · · ·		End:	/	
Laboratory Anal	yses:			<u> </u>	
Container	Preservative	Holding Time	Analysis		
2 - 40mL VOA vial 2 - 40mL VOA vial	4 Deg C	14 Days	1 TPH Volatiles i	• •	
preserved/tared) - 8 oz glass	4 Deg C, H2O + sodium blsulfate (in vial) 4 Deg C	14 Days 28 Days	1 VOC's in Soll a Purge-and-Tra 1 Mercury in Soi	p	/MS Closed-System
- 8 oz glass	4 Deg C	180 Days	1 Metals in Solid		
- 8 oz glass	4 Deg C	28 Days	1 Perchlorate in		
- 8 oz glass	4 Deg C	14 Days	1 Semi-Volatile (Organic Compounds	in Soil
- 8 oz glass	4 Deg C	14 Days	1 PCBs in Soil by	GC/EC	
- 8 oz glass	4 Deg C	14 Days	1 TPH Semi-Vola	tile in Soil by GC/FI	ID
) -	4 Deg C	0 Days	1 Percent Solid		
Sample Comment	s:		<u></u>	· · ·	······
N/A)					
South	rest of Missle	coffin.	probe hit ref	usal at 10	ft bgs on
rock.					
<i>ب</i> ل	ph Description				
0-	2 Clay with	crushed row	ck, possibly fil	1	
J	4 Ugray	elay with	it, possibly fill rocks		
ų					
· 6	-8 🗸 .	• •		-	
Sample Collected	-/D By RM				

1 of 1

Project Desc: Forbes (EX) Atlas Missile Site S:5 - PA sampling City: Allen State: Kansas Program: Superfund Site ID: 07ZZ Site OU: 00 Site Name: Multi-Site - General Site ID: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: Site JD: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: Site JD: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: Site JD: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: Site JD: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: Site JD: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Collection: Start: Site JD: 07ZZ Site OU: 00 Longitude:	Project ID:				-	nager:	Paul Roemern	ian ·
Program: Superfund Site Name: Multi-Site - General Site ID: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: $SB - 04 = 3-10^{\circ}$ Expected Conc: (or Circle One: W) Medium High) Date Time(24 hu Latitude:			Site S-5	5 - PA s	ampling	Chaba	Kanaaa	
Site Name: Multi-Site - General Site ID: 07ZZ Site OU: 00 Location Desc: Soil sample $External Sample Number: 58-04 3-16'$ Expected Conc: (or Circle One: Medium High) Date Time(24 hu Latitude: Sample Collection: Start: $01/5/6^{-}$ []:44 Longitude: End:/_/ Laboratory Analyses: Container Preservative HoldIng Time Analysis 2 -40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in Soil by GC/MS 2 -40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in Soil by GC/MS (Dosed-System Purge-and-Trap Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Seliment 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by IC 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by IC 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by IC 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/MS 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/MD 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/ED 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/FID 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/FID 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/FID 1 - 8 oz glass 4 Deg C 14 Days 1 Perchlorate in Soil by GC/FID 3 - 4 Deg C 0 Days 1 Percent Soild Sample Comments: (N/A) Colocalcd with 33244-5. Sampled From 8-10' Infirmal. Southwest of Missoil & CORGA.						State:	Kansas	
External Sample Number: $58-04 \ 8-10'$ Expected Conc:(or Circle One:(m) Medium High)DateTime(24 hrLatitude:Sample Collection: Start: $01/5.0^{\circ}$ $11:44$ Longitude:End:Laboratory Analyses:AnalysisContainerPreservativeHolding TimeAnalysis2:40mL VOA vial4 Deg C14Days1 TPH Volatiles in Soil by GC/MS2:40mL VOA vial4 Deg C14Days1 TPH volatiles in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Purge-and-Trap1:8 oz glass4 Deg C28Days1 Mercury in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap1:8 oz glass4 Deg C28Days1 Mercury in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap1:8 oz glass4 Deg C28Days1 Mercury in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap1:8 oz glass4 Deg C28Days1 Mercury in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap1:8 oz glass4 Deg C14Days1 Semi-Volatile Organic Compounds in Soil1:8 oz glass4 Deg C14Days1 Perchlorate in Soil by GC/FID0:4 Deg C0Days1 Percent Soild3:8 oz glass4 Deg C14Days1 Percent Soild0:4 Deg C0Days1 Percent Soild0:4 Deg C0Days1 Percent Soild0:4 Deg C0Days1 Perc	-	•					Site ID: 072	Z Site OU: 00
Expected Conc: (or Circle One: Medium High) Date Time(24 hr Latitude:	Location Desc:	Soil sample		<u> </u>				
Latitude:		I	Externa	al Sam	ple Numi	ber: _	58-04 8	5-10'
Longitude:	Expected Conc:	(or Circle One:	(wow	Medium	High)		Date	Time(24 hr)
Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in Soil by GC/MS 2 - 40mL VOA vial 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 2 - 40mL VOA vial 4 Deg C, H2O + sodium 14 Days 1 WOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Metals in Soil by ICP 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Soil by ICP 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1 - 8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/FC 1 - 8 oz glass 4 Deg C 14 Days 1 PH Semi-Volatile in Soil by GC/FID 0 - 4 Deg C 0 Days 1 Percent Soil d Sample Comments: (N/A) 33244-5. Sampled From 8-10' Infurial. Southwest of Misseite Officin . Sathwest of Misseite Officin	Latitude:		Samj	ple Coli	ection:	Start:	01/5/07	17:44
ContainerPreservativeHolding TimeAnalysis2 - 40mL VOA vial4 Deg C14Days1 TPH Volatiles in Soil by GC/MS2 - 40mL VOA vial4 Deg C, H2O + sodium14Days1 TPH Volatiles in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap1 - 8 oz glass4 Deg C28Days1 Mercury in Soil or Sediment1 - 8 oz glass4 Deg C28Days1 Metals in Soilds by ICP1 - 8 oz glass4 Deg C28Days1 Perchlorate in Soil by IC1 - 8 oz glass4 Deg C28Days1 Semi-Volatile Organic Compounds in Soil1 - 8 oz glass4 Deg C14Days1 Semi-Volatile organic Compounds in Soil1 - 8 oz glass4 Deg C14Days1 Perchlorate in Soil by GC/FC1 - 8 oz glass4 Deg C14Days1 Percent Soil by GC/FID1 - 8 oz glass4 Deg C14Days1 Percent Soil by GC/FID1 - 8 oz glass4 Deg C14Days1 Percent Soil by GC/FID1 - 8 oz glass4 Deg C14Days1 Percent Soil by GC/FID0 -4 Deg C0Days1 Percent SolidSample Comments:(N/A)Colocated with 33244-5.Sample Gramest of Missoile Coffera.Sample A from 8-10' Infirmal.Sauthwest of Missoile Coffera.	Longitude:					End:	//	;
2 - 40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in Soil by GC/MS 2 - 40mL VOA vial 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Metals in Solids by ICP 1 - 8 oz glass 4 Deg C 28 Days 1 Metals in Solids by ICP 1 - 8 oz glass 4 Deg C 28 Days 1 Perchlorate in Soil by IC 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1 - 8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/EC 1 - 8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/EC 1 - 8 oz glass 4 Deg C 14 Days 1 Precent Soil by GC/FID 0 - 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3324-5. Sampled From 8-10' Interval. Sauthnest of Missoile WFGA.					A			
2 - 40mL VOA vial (preserved/tared) bisulfate (in vial) 1 - 8 oz glass 4 Deg C 1 - 9 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3-324-5. Sampled From 8-10' interval. Sample comments:			-		•		n Soil by GC/MS	
(preserved/tared)bisulfate (in vial)Purge-and-Trap1 - 8 oz glass4 Deg C28Days1 Mercury in Soil or Sediment1 - 8 oz glass4 Deg C180Days1 Metals in Soil ds by ICP1 - 8 oz glass4 Deg C28Days1 Perchlorate in Soil by IC1 - 8 oz glass4 Deg C28Days1 Perchlorate in Soil by IC1 - 8 oz glass4 Deg C14Days1 Perchlorate in Soil by GC/EC1 - 8 oz glass4 Deg C14Days1 PCBs in Soil by GC/EC1 - 8 oz glass4 Deg C14Days1 TPH Semi-Volatile in Soil by GC/FID0 -4 Deg C0Days1 Percent SoildSample Comments:(N/A)Colocated with 3324-5.Sample Comments:Sample Comments:Sample Comments:		-		•			•	/MS Closed-System
1-8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP 1-8 oz glass 4 Deg C 28 Days 1 Perchlorate in Soil by IC 1-8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1-8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/EC 1-8 oz glass 4 Deg C 14 Days 1 TPH Semi-Volatile in Soil by GC/FID 0- 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3324-5. Sampled From 8-10' internal. Sauthnest of Missile COFF.		bisulfate (in vial)	78		Purge-	and-Traj	р	· · · · · · · · · · · · · · · · · · ·
1 - 8 oz glass 4 Deg C 28 Days 1 Perchlorate in Soil by IC 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soil 1 - 8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/EC 1 - 8 oz glass 4 Deg C 14 Days 1 TPH Semi-Volatile in Soil by GC/FID 0 - 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocatcd with 3324-5. Sampled From 8-10' Internal. (N/A) Colocatcd with 3324-5. Sampled From 8-10' Internal.	-	-		• .				
1-8 oz glass 4 Deg C 14 Days 1 PCBs in Soil by GC/EC 1-8 oz glass 4 Deg C 14 Days 1 TPH Semi-Volatile in Soil by GC/FID 0- 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3324-5. Sampled From 8-10' infirual. Southwest of Missile COFF.	-						•	
1-8 oz glass 4 Deg C 14 Days 1 TPH Semi-Volatile in Soil by GC/FID 0- 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3324-5. Sampled From 8-10' internal. Southnest of Missile ODFGin.	1 - 8 oz glass	4 Deg C	14	Days	1 Semi-\	/olatile (Drganic Compounds	in Soil
5. 4 Deg C 0 Days 1 Percent Solid Sample Comments: (N/A) Colocated with 3324-5. Sompled From 8-10' interval. Southnest of Missile ODEGA.	1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in	n Soil by	GC/EC	
Sample Comments: (N/A) Colocated with 3324-5. Sampled from 8-10' interval. Southnesst of Missile coffin.	1 - 8 oz glass	4 Deg C	14	Days	1 TPH Se	mi-Vola	tile in Soil by GC/FI	ID .
(N/A) Colocated with 3324-5. Sampled from 8-10' interval. Southnest of missile coffin.	0 -	4 Deg C	0	Days	1 Percen	t Solid		
	Sample Commen	its:		•				
	(N/A) Color Sout	ated with 332 hnest of Missile	4-5, WE	50 510.	mplea	l Fra	sm 8-10'	intirval.

Sample Collected By: RM.

ASR Number: 332	24, Sample Number	: 7	QC Coo	le: Matr	ix: Solid Ta	ag ID: 3324-7
City: All	rbes (EX) Atlas Missile en	Site S-5			Paul Roemer Kansas	man
Program: Su Site Name: Mu	perfund Ilti-Site - General				Site ID: 07	ZZ Site OU: 00
				***- <u>-</u>		
Location Desc: So	oil sample					
	:	Externa	l Samp	le Number: _	58-05	Ø-2'
Expected Conc:	(or Circle One:	GW M	ledium	High)	Date	Time(24 hr)
Latitude:		Samp	le Colle	ection: Start:	0:/16/07	09:50
Longitude:				End:	<i>_</i>	:
Laboratory Analy						<u> </u>
Container 2 - 40mL VOA vial	Preservative	Holding	_	Analysis	Call by CC/MC	
- 40mL VOA vial	4 Deg C 4 Deg C, H2O + sodium	14 14	Days Days	1 TPH Volatiles in	• •	C/MS Closed-System
preserved/tared) - 8 oz glass	bisulfate (in vial) 4 Deg C	28	Days	Purge-and-Trap 1 Mercury in Soll)	
- 8 oz glass	4 Deg C	180	Days	1 Metals in Solids	by ICP	
- 8 oz glass	4 Deg C	28	Days	1 Perchlorate in S	Soil by IC	
- 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile O	rganic Compound	ds in Soil
- 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by	GC/EC	
- 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volat	ile in Soil by GC/	'FID
-	4 Deg C	0	Days	1 Percent Solid		·
Sample Comments	3					
N/A) Near So Samplud	uth section of f et 0-2 ft.	ince	adjac	uit to dra	inage. Fea	ture.
Depth	Deserption	· • •		Jack Fill		
0-2	Lt. gray to Slack	clay wit	K (rasi			
2-4	Li gray, hard el	ley with	rocl	٢		
· 4- 6						
6 - 8						
8-10						
10 - 11	Refusil or	hard i	lay/rei	k		
Sample Collected	By: RM			·, .		

	PRFEXAMS5	D ,	roject Manager	Paul Poomor	
-	Forbes (EX) Atlas Missile		r oject Manager sampling	: Paul Roemenn	an
City: A	llen		• •	: Kansas	
Program: S	•		•		
Site Name: M	1ulti-Site - General	·		Site ID: 07ZZ	Site OU: 00
Location Desc:	Soil sample				
		External Sam	ple Number:	56-05 9	-11
Expected Conc:	(or Circle One:	Low Medium	n High)	Date	Time(24 hr)
Latitude:		Sample Col	llection: Start:	Gi/16/07	10.13
Longitude:			End:	/	;
Laboratory Anal	yses:				
Container	Preservative	Holding Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14 Days	1 TPH Volatiles i	n Soil by GC/MS	
2 - 40mL VOA vial preserved/tared) L - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 Days 28 Days	1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soi		MS Closed-System
l - 8 oz glass	4 Deg C	180 Days	1 Metals in Solid		
t - 8 oz glass	4 Deg C	28 Days	1 Perchlorate in		
L - 8 oz glass	4 Deg C	14 Days		Drganic Compounds	in Soll
l - 8 oz glass	4 Deg C	14 Days	1 PCBs in Soil by		
l - 8 oz glass	4 Deg C	14 Days		tile in Soil by GC/FI	ר
-) -	4 Deg C	0 Days	1 Percent Solid		-
Sample Comment		<u></u>	· · · · · · · · ·		· · · · ·
· -	rd with 3324	7. Sample	d from 9-	Il ft Las.	
Sample Collected	Bv: RM				

Project ID: P	RFEXAMS5		Pr	oject Manader	: Paul Roemerm	an
-	orbes (EX) Atlas Missile	Site S-				
City: A				State	: Kansas	
Program: S	•				614 - 78 - 077	
Site Name: M	Iulti-Site - General				Site 10: 0722	Z Site OU: 00
Location Desc:	Soil sample					·····
	I	Extern	al Sam	ple Number:	56-06	6-2
Expected Conc:	(or Circle One:	Date	Time(24 hr)			
Latitude:		Sam	ple Col	lection: Start:	01/6/07	10:42
Longitude:				End:	//	;
Laboratory Anal	yses:		<u></u>		·····	· · · · · · · · · · · · · · · · · · ·
Container	Preservative	Holdin	g Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days		in Soil by GC/MS	
2 - 40mL VOA vial (preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14	Days	1 VOC's in Soil a Purge-and-Tra	at Low Leveis by GC/ ID	MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in So		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	is by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in	-	
1 - 8 oz glass	4 Deg C	14	Days		Organic Compounds	In Soil
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil b	-	_
1 - 8 oz glass	4 Deg C	14	Days		itile in Soil by GC/FI	D
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Commen	ts:					
(N/A)			~	. 10 .	2"	
East	ts: Sf missile coffi	n _	Som	plud from C)~ (_ 、	
(sol	h Description					·
· •	Crushed Rock, P	116				
6-2	Ork Brown C	ley will	rock			
2-U	Lt Gray Clay	hard	nihr	ock.		
· u-b		1.000	1			
	ſ					
6-8				on hard cle		
			5 1	1 1 1	f i	
8-1		she f	etusal)	on hard clev	1 rock	

Sample Collected By: RM

ASR Number:	3324 Sample Numbe	r: 10	QC Co	de:	Matr	'ix: Solid 1	Fag ID: 3324-1	.0
Project ID: Project Desc:	PRFEXAMS5 Forbes (EX) Atlas Missile	e Site S-5		-	nager:	Paul Roeme	erman	
City:	• • •				State:	Kansas		
Program:	Superfund							
Site Name:	Multi-Site - General					Site ID: 0	7ZZ Site OU:	00
Location Desc:	Soil sample					<i></i>		
		Externa	al Sam	ple Numt	oer: _	SB-06	10-12	
Expected Conc	or Circle One		Medium	High)		Date	Time(24	4 hr)
Latitude:		Sam	ole Col	lection: S	ita rt :	01/16/07	<u>11:11</u>	
Longitude:					End:	_/_/_	:	
Laboratory An Container	alyses: Preservative	Holding	Time	Analysi	с		· · · · · · · · · · · · · · · · · · ·	
2 - 40mL VOA vial	4 Deg C	14	Days	-		n Soil by GC/MS	5	
2 - 40mL VOA vial preserved/tared) 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 28	Days Days	Purge-a	and-Traj		GC/MS Closed-Sys	tem
- 8 oz glass	4 Deg C	180	Days	1 Metals	•			
- 8 oz glass	4 Deg C	28	Days	1 Perchlo	rate in s	Soil by IC		
- 8 oz glass	4 Deg C	14	Days	1 Semi-V	olatile (Organic Compou	nds in Soil	
- 8 oz glass	4 Deg C	14	Days	1 PCBs ir	soil by	GC/EC		
- 8 oz glass	4 Deg C	14	Days	1 TPH Se	mi-Vola	tile in Soll by G	C/FID	
-	4 Deg C	0	Days	1 Percent	Solid			
ample Comme								
N/A)	ocated with 332	24-9.	So	rplad f	Mor	10-12'.		
• .	·							
	:							
	•	·						

Sample Collected By: RM

ASR Number: 3324	Sample Number:	11	QC Coc	le:	Matr	ix: Solid	Tag ID:	3324-11
Project ID: PRFE> Project Desc: Forbe City: Allen		Site S-5		mpling	-	Paul Roem	erman	
Program: Super Site Name: Multi-						Site ID: 0	1722 S i	ite OU: 00
Location Desc: Soil s		yterna	l Samn	le Numb)er:	5B-0"	7_0-	2'
Expected Conc:	or Circle One:	\frown	-		/en _	Date		Time(24 hr)
Latitude:		Samp	le Colle	ection: S	itart: End:	<u>or</u> 		<u>4:03</u>
Laboratory Analyses			<u></u>					
Container I	Preservative	Holding	Time	Analysi	S			
2 - 40mL VOA vial	i Deg C	14	Days	1 TPH Vo	ilatiles in	n Soil by GC/M	s	
eserved/tared) b	I Deg C, H2O + sodium bisulfate (in vial) I Deg C	14 28	Days Days	Purge-a	and-Trap	t Low Levels by p or Sediment	y GC/MS C	losed-System
	Deg C	180	Days	1 Metals	In Solid:	s by ICP		
1 - 8 oz glass 4	Deg C	28	Days	1 Perchlo	orate in S	Soll by IC		
1 - 8 oz glass 4	Deg C	14	Days	1 Semi-V	olatile C	Organic Compo	unds in So	pil
1 - 8 oz glass 4	Deg C	14	Days	1 PCBs in	n Soil by	GC/EC		
1 - 8 oz glass 4	Deg C	14	Days	1 TPH Se	mi-Vola	tile in Soil by G	SC/FID	
0 - 4	Deg C	0	Days	1 Percent	t Solid			
Sample Comments:	•			-				•
· · ·	st concrete f	nd.						
Depth								
0-2	Nork							
2.4	Dark	Provers	clay,	rerd				
u-6								
6-8	•							

Geoprobe refusal on rock.

٠

Jimple Collected By: RM

ASR Number:	3324 Sample Numbe	r: 12	QC Co	le: Matrix: Solid Ta	ag ID: 3324-12
•	PRFEXAMS5 Forbes (EX) Atlas Missile	Site S-		ject Manager: Paul Roemer	man
City:				State: Kansas	
Program:	Superfund				
Site Name:	Multi-Site - General			Site ID: 077	ZZ Site OU: 00
Location Desc:	Soil sample	,			
·		Extern	al Samp	le Number: <u> </u>	6-8
Expected Conc	(or Circle One		Medium	High) Date	Time(24 hr)
Latitude:	<u> </u>	Sam	ple Coll	ection: Start: 01/10/07	14:20
Longitude:	. <u></u>			End://	·
Laboratory An	alyses:			<u> </u>	
Container	Preservative	Holdin	g Time	Analysis	
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles in Soil by GC/MS	
40mL VOA vial eserved/tared)	4 D eg C, H2O + sodium bisulfate (in vial)		Days	1 VOC's in Soil at Low Levels by G Purge-and-Trap	C/MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile Organic Compound	ds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volatile in Soil by GC/	/FID
ò -	4 Deg C	0	Days	1 Percent Solid	

Sample Comments:

(N/A)

Colocated with 3324-11.

Imple Collected By: RM

to the second and the second second

and the second second

ł

ASR Number: 332	4 Sample Number:	: 13	QC Co	de: <u> </u>	rix: Solid Ta	g ID: 3324-13
Project ID: PR Project Desc: For	FEXAMS5 bes (EX) Atlas Missile	Site S-5			: Paul Roemern	nan
City: Alle					: Kansas	
Program: Su	perfund					
Site Name: Mu	lti-Site - General				Site ID: 07Z	Z Site OU: 00
Location Desc: So	bil sample					<u></u> .
•		Externa	al Sam	ple Number:	56-08	0-2
Expected Conc:	(or Circle One:	Low	Medium	ı High)	Date	Time(24 hr)
Latitude:		Sam	ple Coll	lection: Start:	01/14/07	<u>14 :43</u>
Longitude:				End:	_/_/_	;
Laboratory Analy	ses:			<u></u>		
Container	Preservative	Holding	g Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days		in Soil by GC/MS	
- 40mL VOA vial	4 Deg C, H2O + sodium	14	Days			C/MS Closed-System
oreserved/tared) 1 - 8 oz glass	bisulfate (in vial) 4 Deg C	28	Days	Purge-and-Tra 1 Mercury in So		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid		
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in	Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	Organic Compound	s in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil b	y GC/EC	
1 - 8 oz glass	4 Deg C	14	Days		atile in Soll by GC/I	FID
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Comments						
(N/A)						
A)aa5	west concrete	pod.	•			·
^						
De	An D	escript	·m			
0 -1	x <u>y</u>	Dork b	riewa	clay with reck	x	
2-	U.	N		1		
		ľ				
4-	G i			۰.		
() -					•	
5 -	- 10					
les	- (1)	V			,	
Sample Collected	Bv: RM	9		usal on ros	ek.	
Semple Soliceed	(seb	or when	ht ret	N-22- STORE	-	
		T				

1 of 1

ASR Number: 3	3324 Sa	mple Number:	: 14	QC Co	de: Mati	rix: Solid	Tag ID: 3324-14
Project ID: Project Desc:			Sito S.E		oject Manager	Paul Roe	merman
Project Desc. City: Program:	Allen		Sile 5-1) - FA 30	• •	Kansas	
Site Name:	•					Site ID:	07ZZ Site OU: 00
Location Desc:	Soil sam	ple					· · _ · · ····
			Externa	al Samı	ple Number:	SB-0	8 10-12
Expected Conc:		(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:			Sam	ole Coll	ection: Start:	01/16/0	<u>1 (5:03</u>
Longitude:					End:		
Laboratory Ana	alyses:	<u>., </u>					
Container	Pres	ervative	Holding	; Time	Analysis		
2 - 40mL VOA vial	· 4 Deg	C	14	Days	1 TPH Volatiles	n Soil by GC/	'MS
- 40mL VOA vial eserved/tared)	bisulf	C, H2O + sodium ate (in vial)	14	Days	Purge-and-Tra	p	by GC/MS Closed-System
- 8 oz glass	4 Deg		28	Days	1 Mercury in Soi		t
1 - 8 oz glass	4 Deg		180	Days	1 Metals in Solic		
1 - 8 oz glass	4 Deg	C	28	Days	1 Perchlorate in	•	
1 - 8 oz glass	4 Deg	C	14	Days	1 Semi-Volatile	Organic Com	oounds in Soil
1 - 8 oz glass	4 Deg	C	14	Days	1 PCBs in Soil by	/ GC/EC	
1 - 8 oz glass	4 Deg	C	14	Days	1 TPH Semi-Vola	atile in Soil by	/ GC/FID
0 -	4 Deg	C	0	Days	1 Percent Solid		
Sample Comme	nts:				· · ·	·	<u></u>

(N/A)

Colocated with 3324-13.

ample Collected By: RM

.

ł

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS											
ASR Number:	3324 Sample Numbe	r: 15	QC Co	de: Mat	rix: Solid T	ag ID: 3324-15					
Project ID:	PRFEXAMS5	•	Pro	oject Manager	: Paul Roeme	rman					
Project Desc:	Forbes (EX) Atlas Missile	e Site S-5	5 - PA s	ampling							
City:	Allen			State	: Kansas						
Program:	•										
Site Name:	Multi-Site - General				Site ID: 07	7ZZ Site OU: 00					
ocation Desc:	Soil sample				. <u>.</u>						
	•	Externa	al Sam	ple Number:	5B-09	0-2'					
Expected Conc	cor Circle One				Date	Time(24 hr)					
Latitude:	<u> </u>	Samp	ole Coli	ection: Start:	01/00	15:20					
Longitude:	·····			End:	_/_/	:					
Laboratory An	alyses:	<u> </u>									
Container	Preservative	Holding	Time	Analysis							
- 40mL VOA vial	4 Deg C	14	Days		in Soll by GC/MS						
40mL VOA vial (eserved/tared) - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 14 28	Days	Purge-and-Tra	р	GC/MS Closed-System					
- 8 oz glass	4 Deg C	180	Days Days	1 Mercury in Soi 1 Metals in Solid							
- 8 oz glass	4 Deg C	28	Days	1 Perchlorate in	•						
- 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	-	nds in Soil					
- 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil b	•						
- 8 oz glass	4 Deg C	14	Days		atile in Soll by GO	C/FID					
•	4 Deg C	0	Days	1 Percent Solid		-, ·					
		-									

South lagoon.

Depth Description 0-2 Deck chay 2-4 Lt. give chay with rock 4-4 Crusted rock

Jample Collected By: RM

ASR Number:	3324 Sample Number	: 16	QC Co	de:	Matr	rix: Solid T	ag ID: 3324-16
Project ID:	PRFEXAMS5		Pre	oject Mar	ager	Paul Roeme	rman
Project Desc:	Forbes (EX) Atlas Missile	Site S-5	5 - PA s	ampling			
City:				:	State	: Kansas	
Program:	•						
Site Name:	Multi-Site - General					Site ID: 07	7ZZ Site OU: 00
Location Desc:	•						,
		Externa	al Samı	ple Numb	er: _	SB-10	0-2'
Expected Conc	: (or Circle One:	Low	Medium	High)		Date	Time(24 hr)
Latitude:		Sam	ple Coll	lection: S	tart:	01/16/07	14:00
Longitude:	<u> </u>				End:	_/_/_	·:
Laboratory An	- ,						
	Preservative	Holding	-	Analysi			
2 - 40mL VOA vial	4 Deg C 4 Deg C, H2O + sodium	14	Days			n Soll by GC/MS	
served/tared) 1 - 8 oz glass	bisulfate (in vial) 4 Deg C	14 28	Days Days	Purge-a	and-Tra	•	GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals	in Solid	s by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlo	rate in :	Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-V	olatile (Organic Compou	nds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in	Soil by	GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Se	mi-Vola	tile in Soil by G	C/FID
)	4 Deg C	0	Days	1 Percent	Solid		
Sample Comme	ents:						· · · · · · · · · · · · · · · · · · ·
(N/A) Sent	hoost of site on	west s	s:de os	i ford.	٥.		
Dep		_	,				
° C			1				
2-4	f v	1.	1				
4-(-	y with	rock				
(Beoprote hit refuse	al on	rock	int le	' <u>L</u> g s		

mple Collected By: RM

.

and should be the should

1.000

and the firmed areas of

j,

:

.

Project ID: P	RFEXAMS5		Pr	oject Man	ager: P	aul Roemerr	nan
	orbes (EX) Atlas Missile	Site S-	5 - PA s	ampling	-		
•	llen			5	State: K	lansas	
Program: S	-						
Site Name: M	lulti-Site - General				2	Site ID: 072	Z Site OU: 00
Location Desc:	Soil sample						/
		Extern	al Sam	ple Numb	er:	56-10	4-6'
Expected Conc:	(or Circle One	: Lovy	Medium	ı High)		Date	Time(24 hr)
Latitude:	· · · · · · · · · · · · · · · · · · ·	Sam	ple Col	lection: S	tart: C	1/6/07	16:18
Longitude:					End:		:
Laboratory Anal	yses:						
Container	Preservative	Holdin		Analysis			
2 - 40mL VOA vial	4 Deg C	14	Days			oil by GC/MS	
40mL VOA vla! reserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14	Days		n Soll at L Ind-Trap	ow Levels by G	C/MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days		•	Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals i	n Solids b	y ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchloi			
1 - 8 oz glass	4 Deg C	14	Days		,-	anic Compound	s in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in	•	-	
1 - 8 oz glass	4 Deg C	14	Days			in Soil by GC/F	-ID
] -	4 Deg C	0	Days	1 Percent	Solid		
Sample Comment							· · · · · · · · · · · · · · · · · · ·
(N/A) ای اور	cated with 332 get to le fit bys-	416). N	ofe: tw	v bere	heles whre	- rgamed
to a	get to Le H bys-						
	<i>(</i>						

~

	orbes (EX) Atlas Missile	Site S-5		ampling	ager: Paul Roer	merman	
City: A				5	State: Kansas		
Program: S Site Name: M	uperfund Iulti-Site - General				Site ID:	07ZZ Site OU	: 00
Location Desc:	•						
		Externa	al Samj	ple Numb	er: <u>5B-11</u>	a-4'	<u> </u>
Expected Conc:	(or Circle One:				Date		24 hr)
Latitude:		Samp	ole Coll	ection: S	tart: <u>01 /16/0</u>	<u>n /6:50</u>	I
Longitude:					End://		
Laboratory Anal	yses:						
Container	Preservative	Holding	I Time	Analysis	;		
2 - 40mL VOA vial	4 Deg C	14	Days		atiles in Soil by GC/		
<pre>2 - 40mL VOA vial</pre>	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 28	Days Days	Purge-a	n Soil at Low Levels nd-Trap r In Soil or Sediment	by GC/M5 Closed-S	ystem
l - 8 oz glass	4 Deg C	180	Days	1 Metals i	n Solids by ICP		
- 8 oz glass	4 Deg C	28	Days	1 Perchio	ate in Soll by IC		
- 8 oz glass	4 Deg C	14	Days	1 Semi-V	platile Organic Comp	ounds in Soll	
- 8 oz glass	4 Deg C	14	Days		Soil by GC/EC		
- 8 oz glass	4 Deg C	14	Days	1 TPH Ser	ni-Volatile in Soil by	GC/FID	
) -	4 Deg C	0	Days	1 Percent	Solid		
Sample Comment	 ts:					<u> </u>	<u></u>
N/A) Bretage	and location. No		Site	- ct en	l of Road	0	
[Jept	h Descrip Crusted ?	ron					

2-4 Brown chy with rock Ceoprobe hit refused on rock at 4' bgs.

mple Collected By: RM

.

. .

Project ID: PRFEXAMSS Project Manager: Paul Roemerman Project Dess: Forbes (EX) Atlas Missile Site S-5 - PA sampling State: Kansas Program: Superfund State: Kansas Program: Superfund Site ID: 07ZZ Site OU: 00 Location Desc: Soil sample External Sample Number: SB-12 Expected Conc: (or Circle One: Low) Medium High) Date Time(24 hr Latitude:		ASR Number: 332	4 Sample Number:	19	QC Cod	le:	Matri	ix: Solid	Tag II): 3324-19
External Sample Number: <u>SB-12</u> inter(24 hr Latitude:		Project Desc: For City: Alle Program: Su	bes (EX) Atlas Missile S en perfund	Site S-		mpling	_	Kansas		
Expected Conc: (or Circle One: Low Medium High) Date Time(24 hr Latitude:		Location Desc: So	•					SR-1	2	
Latitude:		Expected Conc:		\rightarrow		•				Time(24 hr)
Longitude:		•		\sim			tartı	01/18/0	1	
ContainerPreservativeHolding TimeAnalysisU 2 - 40mL VOA viai4 Deg C14 Days1 TPH Volatiles in Soil by GC/MSU 3 - 40mL VOA viai4 Deg C14 Days1 VOC's in Soil at Low Levels by GC/MS Closed-System Purgeand-Trap 1 -8 es glass4 Deg C1 - 8 es glass4 Deg C28 Days1 Metals in Soil by ICP GAt Mercury1 - 8 es glass4 Deg C18 Days1 Perchtorate in Soil by ICP 1 Metals in Soil ds by ICP GAt Mercury1 - 8 es glass4 Deg C28 Days1 Perchtorate in Soil by ICP 1 - 8 es glass1 - 8 es glass4 Deg C14 Days1 Semi-Volatile Organic Compounds in Soil and PCB1 - 8 es glass4 Deg C14 Days1 TPH Semi-Volatile in Soil by GC/FIC1 - 8 es glass4 Deg C14 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C14 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C14 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 TPH Semi-Volatile in Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 Percent Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 Percent Soil by GC/FID1 - 8 es glass4 Deg C0 Days1 Percent Soil by GC/FID2 - 9 on L VoA4 Deg C0 Days1 Percent Soil by GC/FID3 - 9 o			-	Jam						_:
1-8 oz glass 4 Deg C 180 Days 1 Metals in Solids by JCP and Mercury <u>1-8 oz glass 4 Deg C 28 Days 1 Perchiorate in Solids by ICP and Mercury</u> <u>1-8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Compounds in Soli and PCB</u> <u>1-8 oz glass 4 Deg C 14 Days 1 PLES in Solid by GC/FLD</u> <u>1-8 oz glass 4 Deg C 14 Days 1 TPL Semi-Volatile in Solid by GC/FLD</u> <u>1-8 oz glass 4 Deg C 0 Days 1 Percent Solid</u> Sample Comments: (N/A) Collected Soil Somple from Soil pile Near Missile Coffin Collected From North Site of pile. Collected extra volume.		Container 2 - 40mL VOA vial 3 - 40mL VOA vial (preserved/tared)	Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in vial)	14 14	Days Days	1 TPH Vo 1 VOC's i Purge-	olatiles ir in Soil at and-Trap	t Low Levels	by GC/MS	Closed-System
1 - 0 oz glass 4 Deg C 14 - Days I PCBs in Soll by GC/EC 1 - 8 oz glass 4 Deg C 14 Days I TPH Semi-Volatile in Soll by GC/FID 4 OME- 40 mL VOA 4 Deg C 0 Days I Percent Solid Sample Comments: (N/A) Collected Soil Sample from Soil pile Near Missile Coffin Collected from North Site of pile. Collected extra volume.		1 - 8 oz glass 1 - 8 oz glass	4 Deg C	180 	Days Days	1 Metals	In Solids	sby ICP GM	e Mercu	_
4 and 40 mL VOA 4 Deg C 0 Days 1 Percent Solld Sample Comments: (N/A) Collected Soil Sample from Soil pile Near Missile Coffin. Collected from north site of pile. Collected extra volume.		•	•		• .				iounas in	5011 0000 0
(N/A) Collected Soil Sample from Soil pile Near Missile Coffin. Collected from North Site of pile. Collected extra volume.	ц	· · · · ·	•		•			tile in Soll by	GC/FID	
		(N/A)		from	m so. k of	l pile	nea Col	r Missi lected d	e cof	Fin -
Sample Collected By: RM						Y. C.	Ų.		911101	volume -
Sample Collected By: RM						•				
Sample Collected By: RM	·	· · ·	· · · · · ·	•	. ·			•		
Sample Collected By: RM			 			·				· .
		Sample Collected	By: RM							
1 of 1	~				1 of 1					

Project ID: PRF	FXAMS5	Dr	oject Manager	Paul Roemerm	an
-	bes (EX) Atlas Missile		-	. Faul Roetherin	an
City: Alle				: Kansas	
Program: Sup					
Site Name: Mul	ti-Site - General			Site ID: 07ZZ	Site OU: 00
• 	<u>.</u>				· · ·
.ocation Desc: So	il 5035/TPH VOA Trip	blank sample			
		External Sam	ple Number:		
xpected Conc:	(or Circle One:	\sim		Date	Time(24 hr)
-					
Latitude:	<u> </u>	Sample Col	lection: Start:	01/18/07	L:47
Longitude:	_ <u> </u>		End:	//	. — : —
Laboratory Analys	ses:		• • • •		,
Container	Preservative	Holding Time	Analysis		
- 40mL VOA vial	4 Deg C	14 Days	1 TPH Volatiles i		.
- 40mL VOA vial preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14 Days	1 VOC's in Soil a Purge-and-Tra	t Low Levels by GC/	MS Closed-System
+ 2-40mL VOA	4 Deg C	0 Days	1 Percent Solid	F	•
ample Comments	:				
N/A)					· .
•					
N.					
, . .					• .
		•			
	· ·				
· · ·					
				•	
			· .		
	• • •			•	
• •					
			•		
					·
		•	· .	•	
•	-				
••••			• •	·	
		: .			
					• • •
Sample Collected	By: .RM		-		
		• .			
•		1 of 1			

• • •

.

ASR Number: 332	4 Sample Number:	27 QC C	Code: M	atrix: Solid Tag	ID: 3324-27
Project ID: PR Project Desc: For City: Alle Program: Su	bes (EX) Atlas Missile S en		sampling	er: Paul Roemerm te: Kansas	ian
Site Name: Mu				Site ID: 0722	Z Site OU: 00
Location Desc: Se	diment sample		<u> </u>		
	Ē	xternal Sar	nple Number:	<u>SEO-02</u>	<u> </u>
Expected Conc:	(or Circle One:	Low Mediu	m High)	Date	Time(24 hr)
Latitude:		Sample Co	ollection: Sta	rt: 01/17/07	10:12
Longitude:			En	d://	:
Laboratory Analy Container	SES: Preservative	Holding Time	Analysis		
2 - 40mL VOA viai	4 Deg C	14 Days		es in Soil by GC/MS	
2 - 40mL VOA vial	4 Deg C, H2O + sodiaria bisulfate (in vial)	14 Days	Purge-and-		/MS Closed-System
8 oz-glass	4 Deg C		1 Mercury in	Soil or Sediment	ercum
- 8 oz glass - 8 oz glass	4 Deg C 	180 Days	- 1 Perchiorato	-in Soil by IC-	
- 8 oz glass	4 Deg C	14 Days	1 Semi-Volat	die Organic Compounds	s in Soil and PCB
	4- Deg C		1 PCBs in So	II try GC/EC	•
L - 8 oz glass	4 Deg C 4 Deg C	14 Days 0 Days		Volatile in Soli by GC/F lid	
2-40 mL VOA					
Sample Comments (N/A) Collected	so-diment Samp from east portion	le from	drainnge Sanple	Feature that location is	t receives
Road 1	5				.
•.					
	•			•	· .
Sample Collected	By: RM				
	• •	1 of	1		

Project ID: PRFE			-		ager:	Paul Roem	ierman	
Project Desc: Forbe City: Allen	is (EX) Atlas Missile S	Site S-5	- PA san		State:	Kansas		
Program: Super	fund			5	, cutor	Kanoas		
Site Name: Multi-						Site ID:	07ZZ	Site OU: 00
ocation Desc: Sedi	ment sample							
		Externa	l Sampl	e Numb	er: _	SE0-03	3	
Expected Conc:	(or Circle One:	Low M	1edium	High)		Date		Time(24 hr
Latitude:		Samp	le Colle	ction: Si	tart:	01/17/0	7	15:47
Longitude:				I	End:		-	_:
Laboratory Analyse								
	Preservative	Holding	_			n Soil by GC/N	45	
	4 Deg C 4 Deg C, H 2Oscoodlam	14 14	Days Days			-	•	S Closed-System
p epoortettijkased) i	4 Deg C, Hackborn	<u></u>	-Days	Purge-a	and-Trap			, closed bystem
	4 Deg C	180	Days — Days	1 Metals i	in Solid:	s by ICP and	Merc	ury
-	4 Deg C		-Dàys	_1_Perchlor	r ate in S	Soil by IC.		PC
	4 Deg C	14	Days	1 Semi-Va	olatile C)rganic Comp	ounds in	Soil and front
	4-Deg C	14-	-Days	4.000-1-	Coll Law	COLEC		
- 8 oz glass	4 Deg C	14	Days	1 TPH Ser	mi-Vola	tile in Soll by	GC/FID	and Perchlory
	4 Deg C	0	Days	1 Percent	Solid			
Sample Comments:								
N/A) Collected	Sediment Sau if sile.	~f!~	from	drain	0.02	viay a	1 Sou	thwest
Corner o	f site.							
· .							•	
	· .						•	
		•						
		•						•
		•					,	· .

ASR Number: 33	24 Sample Number:	29	QC Cod	le: <u>Mat</u>	rix: Solid	Tag I	D: 3324-29
Project ID: P				ject Manager	: Paul Roen	hermar	1
Project Desc: F	orbes (EX) Atlas Missile	Site S-5	- PA sa	mpling			
City: A	llen			 State 	: Kansas		·
Program: S	uperfund						
Site Name: M	lulti-Site - General				Site ID:	07ZZ	Site OU: 00
Location Desc:	Sediment sample						
		Externa	l Samp	le Number:	<u> </u>	4	
Expected Conc:	(or Circle One:	LOW M	ledium	.High)	Date		Time(24 hr)
Latitude:		Samp	le Coll	ection: Start:	01 11 0	<u>ר</u>	12 26
Longitude:	· · · · · · · · · · · · · · · · · · ·			End:	•//	-	_:
Laboratory Anal	lyses:						<u></u>
Container	Preservative	Holding	Time	Analysis			
- 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles	in Soil by GC/	MS	
: - 40mL VOA vial	4 Deg C, H 20-1-sodiam b issifate (in vial)	14	Days	Purge-and-Tr	ар		S Closed-System
8-oz glass			Days-	- 1 Mercury hr Sc	ni or Sedment	Marri	
- 8 oz glass	4 Deg C	180	Days	1 Metals in Soli			~~~~
	4 Deg C		-Days-	- 1 -Perchlorate in			- I DER
- 8 oz glass	4 Deg C	14	Days			ounds in	Soll and fcB
<u></u>	- 4 Deg C		Days_		ry GC/EG		h De si f
- 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vol	latile in Soil by	GC/FID	and Pirchlorn
		0	Days	1 Percent Solid			

Sample Comments:

(N/A)

Sample Collected By: RM

.

Project ID: PR	FEXAMS5 rbes (EX) Atlas Missile	Site S-5		oject Manager:	Paul Roemern	าอก
City: All		0.0000		• -	Kansas	
Program: Su						
Site Name: Mu	lti-Site - General	· .			Site ID: 07Z	Z Site OU: 00
Location Desc: Se	ediment sample				_	
	I	Externa	al Samj	ole Number: _	SE0-01	
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:		Samp	ole Coll	ection: Start:	DV17/07	09:45
Longitude:	<u>. </u>			End:		_:
Laboratory Analy	ses:					
Container	Preservative	Holding) Time	Analysis .		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles i	•	····-
2 - 40mL VOA vial . 	4 Deg C, H20- Stdillyn 575alfato-(ictoriak) 	14 28.	Days Days	Purge-and-Tra		C/MS Closed-System
- 8 oz glass	4 Deg C	180	Days		s by ICP and Mac	end
-8 oz glass	- 4 Deg C		Days	1 Perchlorate in	Soll by IC	
- 8 oz glass	4 Deg C	. 14	Days	1 Semi-Volatile (Organic Compound	s in Soil and PCB
- 8 oz glass	-4.Deg.E		-Days-		GC/ES	
8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vola	tile in Soll by GC/F	ĪD
2-40mLVOA	4 Deg C	0	Days	1 Percent Solid		· · ·
Sample Comments	5 .					
- 'NI / A \	t sample from	di	hinage	- feature	east of (agents_

Sample Collected By: RM

1 of 1

Latitude:	•	FEXAMS5 rbes (FX) Atlas Missile	site S-9	• •		: Paul Roemerm	ian
Program: Superfund Site Name: Multi-Site - General Site ID: 07ZZ Site OU: 00 Location Desc: These GW sample External Sample Number: MW - 01 Expected Conc: (or Circle One: (or) Medium High) Date Time(24 h Latitude:	•	• •	- Sile 3-1	ΓΑ 3 α		: Kansas	
Site Name: Multi-Site - General Site ID: 0722 Site OU: 00 Location Desc: Image: GW sample External Sample Number: MW - DI Expected Conc: (or Circle One: (ow Medium High) Date Time(24 http://dx.dow/dw.d	•		•		0.000		
External Sample Number: MW-01 Expected Conc: (or Circle One: (D) Medium High) Date Time(24 h Latitude: Sample Collection: Start: & U/,17671 (12:20) Longitude: End: 01/18/071 (12:45) Laboratory Analyses: Container Preservative Holding Time Analysis 1 liter Cubitainer 3 mit of NNO2/L to pH +22 28 Days 1 Perchlorate in Water by IC 1 liter Cubitainer 3 mit of NNO2/L to pH +22 28 Days 1 Perchlorate in Water by IC 1 liter Cubitainer 4 Deg C 28 Days 1 Perchlorate in Water by IC 1 liter Cubitainer 4 NNO3 to pH +22 180 Days 1 Metals in Water by IC/NS and Hg 1 liter Cubitainer 4 NNO3 to pH +22 180 Days 1 Metals Dissolved, in Water and Hg 1 liter Cubitainer 4 NNO3 to pH +22 180 Days 1 Metals Dissolved, in Water and Hg 1 liter Cubitainer 4 NNO3 to pH +22 180 Days 1 Metals Dissolved, in Water and Hg 1 liter Cubitainer 4 NNO3 to pH +22 180 Days 1 Metals Dissolved, in Water and Hg 1 liter Cubitainer 4 NO3 to pH +22 180 Days 1 Metals Dissolved, in Water and Hg 1 liter Cubitainer 4 Dog C 7 Days 1 Pesticides in Water by ICP/MS and Hg 1 liter Cubitainer 4 Deg C 7 Days 1 Pesticides in Water by CC/EID STEr 2 40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4 40mL VOA vial 4 Deg C, HCL to pH +22 14 Days 1 VOCs in Water by GC/MS 4 40mL VOA vial 4 Deg C, HCL to pH +22 14 Days 1 VOCs in Water by GC/MS 4 context from an Unsecured Permenant monitoring well locabed east of the phissile Coffin. Depth to mater 20 41 Ff (Krain top of well hoursing). Total supph 23,24 ff from top of well hoursing. Fur and apprese inschip 2 agailans before Sampling - Well casing i 2 2 Perc. Sampling - Well casing i 2 2 Perc. 4 Could only collect 3 ambers due to Slow well retharg.	_	•				Site ID: 07Z2	Z Site OU: 00
Expected Conc: (or Circle One: (Low Medium High) Date Time(24 h Latitude:	Location Desc: 🕅	Base. GW sample			· · · · · · · · · · · · · · · · · · ·		
Latitude:			Externa	al Samp	e Number:	MW-01	· · ·
Longitude: End: 01/18/07 [2:45]	Expected Conc:	(or Circle One	: (Low)	Medium	High)	Date	Time(24 h
Laboratory Analyses: Container Preservative Holding Time Analysis 1 - 1 Liter Cubitainer 4 Deg C 28 Days 1 Perchlorate in Water by IC 1 - 1 Liter Cubitainer 5 Tht of TINO3/L to pH<2 28 Days 1 Mercury in Water 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Mercury Dissolved, in Water 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Mercury Dissolved, in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 2802 amber glass 4 Deg C 7 Days 1 Semi-Volatile Organic Compounds in Water and Th 1 - 12802 amber glass 4 Deg C 7 Days 1 Pesticides in Water by GC/EC 1 - 12802 amber glass 4 Deg C 1 4 Days 1 TPH Volatiles in water by GC/ED STET 2 - 40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 TPH Volatiles in water by GC/MS 4 - 40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well localed east of the missile Coffin. Daph to water 20 Hl ft (from top of will housing). Total upph 23.24 ft from top of well housing. Purcased approximately 2 gaillens before Sampling. Well casing i 2 2" Purc- 4 Could only collect 3 ambers Clue to Slow well rethergy.	Latitude:	<u>. </u>	Samp	ole Colle	ction: Start:	01/17/07	12:20
ContainerPreservativeHolding TimeAnalysis1:1 Liter Cubitainer4 Deg C28Days1 Perchlorate in Water by IC1:1 Liter Cubitainer5 mt of 11N03/L to pH <2	Longitude:				End:	01/18/07	12:45 ·
1-1 Liter Cubitainer 4 Deg C 28 Days 1 Perchlorate In Water by IC 1-1 Liter Cubitainer 5 mit of THMO3/L to pH+2 22 Days 1 Meteriny in Water 1-1 Liter Cubitainer HNO3 to pH+2 180 Days 1 Metats in Water by ICP/MS and Hg 1-1 Liter Cubitainer HNO3 to pH+2 180 Days 1 Metats in Water by ICP/MS and Hg 1-1 Liter Cubitainer HNO3 to pH+2 180 Days 1 Metats in Water by ICP/MS and Hg 1-1 Liter Cubitainer HNO3 to pH+2 180 Days 1 Metats - Dissolved, in Water by ICP/MS and Hg 1-1 Liter Cubitainer HNO3 to pH+2 180 Days 1 Metats - Dissolved, in Water by ICP/MS and Hg 1-1 Z802 amber glass 4 Deg C 7 Days 1 SemI-Volatile Organic Compounds in Water and Th 1-2802 amber glass 4 Deg C 7 Days 1 Pestidides in Water by GC/EID STET 2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles In water by GC/MS for Low Detection Limits Sample Comments: (N/A) (N/A) Collected From an unsecured permenant monitoring well located past of the missile Coffin Deght to mater 20.41 ft (from top of will housing). Total Upph 23.24 ft from top of well housing i 2 Def well casing i 2 A Prc- Sangling Well casing i 2 A Prc- t Could only collect 3 ambers Cure to slow well rethery					· · ·	· · · · · · · · · · · · · · · · · · ·	
1 - 1 Liter Gubitement STIRL OF HINDS/L to pH +2 28 Days 1 Mercury in Water 1 - 1 Liter Gubitainer HIND3 to pH +2 180 Days 1 Metals in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HIND3 to pH +2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HIND3 to pH +2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 12802 amber glass 4 Deg C 7 Days 1 Semi-Volatile Organic Compounds in Water and T(1 - 12802 amber glass 4 Deg C 7 Days 1 Pesticides in Water by GC/EC 1 - 12802 amber glass 4 Deg C 7 Days 1 THH Sami-Volatile In Water by GC/ED STEr 2 - 40mL VOA vial 4 Deg C 14 Days 1 THH Volatiles In water by GC/MS 4 - 40mL VOA vial 4 Deg C, HCL to pH +2 14 Days 1 VOCs in Water by GC/MS 5 Sample Comments: (N/A)		Preservative	Holding	Time			
1 1 Liter Cubitainer HNO3 scidity, 4 Deg C 28 Days 1 Mercury Dissolved, in Water 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 Liter Cubitainer HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Hg 1 - 1 2802 amber glass 4 Deg C 7 Days 1 Semi-Volatile Organic Compounds in Water and M 1 - 1 2802 amber glass 4 Deg C 7 Days 1 Pestides in Water by GC/EC 1 - 1 2802 amber glass 4 Deg C 7 Days 1 THH Sami-Volatile Organic Compounds in Water and M 1 - 1 2802 amber glass 4 Deg C 7 Days 1 THH Sami-Volatile Organic Compounds in Water and M 2 - 40mL VOA vial 4 Deg C 14 Days 1 THH Volatiles in water by GC/MS 2 - 40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permanat monitoring well 1 located past of the missile Coffin Dayh to noter 20 H ft (from top of well housing). Total Wapth 23.24 ft from tep of well housing i 2 4" Prc- Sampling - Well casing i 2 4" Prc- 4 Could only collect 3 ambers due to Slow well retharg.	· ·	-		-		-	•
1-1 Liter Cubitainer HNO3 to pH<2 180 Days I Metals in Water by ICP/MS and Hg 1-1 Liter Cubitainer HNO3 to pH<2 180 Days I Metals - Dissolved, in Water by ICP/MS and Hg 1-12802 amber glass 4 Deg C 7 Days I Semi-Volatile Organic Compounds in Water and Th 1-12802 amber glass 4 Deg C 7 Days I Pestiddes in Water by GC/EC 1-12802 amber glass 4 Deg C 7 Days I TRH Sami-Water by GC/EC STEr 2-40mL VOA vial 4 Deg C 14 Days I TRH Sami-Water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days I VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin Deght to mater 2041 ft (from top of will housing). Total Upph 23.24 ft from top of well housing. Furged approximately 2 gallons before Sampling - Well Casing i 2 2 ^H Prc- Located any collect 3 ambers due to Slow well rethergy.	1 - 1 Liter Cubiteiner	· · ·			•		•
1-1 Liter Cubitalner HNO3 to pH<2 180 Days 1 Metals - Dissolved, in Water by ICP/MS and Ag 1-12802 amber glass 4 Deg C 7 Days 1 Semi-Volatile Organic Compounds in Water and Th 1-12802 amber glass 4 Deg C 7 Days 1 Pesticides in Water by GC/EC 1-12802 amber glass 4 Deg C 7 Days 1 TPH Sami-volatile in Water by GC/EC 1-12802 amber glass 4 Deg C 7 Days 1 TPH Sami-volatile in Water by GC/ED STET 2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located past of the prissile Coffin Degth to water 20:41 ft (from top of well housing). Total depth 23.24 ft from top of well housing. Purged approximately 2 gallens before Sampling Well casing i 2 2 th Prc- Located only collect 3 ambers due to slow well retharg.	•			Days			
 1-12802 amber glass 4 Deg C 1-12802 amber glass 4 Deg C 2 Days 1 Seml-Volatile Organic Compounds in Water and T 1-12802 amber glass 4 Deg C 2 Days 1 Pesticides in Water by GC/EC 1-12802 amber glass 4 Deg C 14 Days 1 TPH Semi-volatiles in water by GC/ED. STET 2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to mater 20.41 ft (from top of will housing). Total depth 23.24 ft from tep of well housing. Purged approximately 2 gallens before Sampling. Well casing i 3 2" Prc Kould only collect 3 ambers due to slow will retharg. 	1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days			· · ·
1-12802 amber glass 4 Deg C 7 Days 1 Pesticides in Water by GC/EC 1-12802 amber glass 4 Deg C 7 Days 1 TRH Sami welatile in Water by GC/EID STET 2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to water 20.41 ft (from top of well housing). Total depth 23.24 ft from tep of well housing. Total depth 23.24 ft from tep A well casing i 3 2 th Prc K Could only collect 3 ambers due to slow well recharge	1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days			v
1-12802 amber glass 4 Deg C 7 Days 1 TRH Semi-valatille in Water by GC/ED STET 2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin - Depth to mater 20.41 ft (from top of well housing). Total Nepth 23.24 ft from tep of well housing. Purged approximately 2 gallens before Sampling - Well casing i 3 2 ^H Prc t Could only collect 3 ambers due to slow well recharge	🖣 - 128oz amber glass	4 Deg C	7	Days 🕔	1 Semi-Volatile	Organic Compounds	in Water and TP
2-40mL VOA vial 4 Deg C 14 Days 1 TPH Volatiles in water by GC/MS 4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to water 20.41 ft (from top of well housing). Total depth 23.24 ft from top of well housing. Purged approximately 2 gallens before Sampling. Well casing is 2" prc t Could only collect 3 ambers due to slow well rethargy.		4 Deg C	7.	Days	1 Pesticides in V	ater by GC/EC	
4-40mL VOA vial 4 Deg C, HCL to pH<2 14 Days 1 VOCs in Water by GC/MS for Low Detection Limits Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to mater 20.41 ft (from top of well housing). Total depth 23.24 ft from tep of well housing. Purged approximately 2 gallers before Sampling- Well casing is 2" prc * Could only collect 3 ambers due to slow well recharge	1 - 1280z amber-glass	-4 Deg C		Days	-1 TPH Semi-vola	tile In Water by GC/	ED_ STET
Sample Comments: (N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to water 2041 ft (from top of well housing). Total depth 23.24 ft from top of well housing. Purged approximately 2 gallons before Sampling. Weil casing is 2" prc. K Could only collect 3 ambers due to slow will recharge	2 - 40mĽ VOA vial	4 Deg C	14	Days	1 TPH Volatiles i	n water by GC/MS	· .
(N/A) Collected from an unsecured permenant monitoring well located east of the missile Coffin. Depth to water 2041 ft (from top of well housing). Total depth 23.24 ft from tep of well housing. Purged approximately 2 gallons before Sampling. Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge	4 - 40mL VOA viał	4 Deg C, HCL to pH<2	· 14	Days	1 VOCs in Water	by GC/MS for Low I	Detection Limits
(N/A) Collected From an unsecured permenant monitoring well located east of the missile Coffin. Depth to water 2041 ft (from top of well housing). Total depth 23.24 ft from tep of well housing. Purged approximately 2 gallons before Sampling. Well casing is 2" pvc. K Could only collect 3 ambers due to slow well recharge	Sample Comments	:			· · · · · ·	, <u></u>	
Collected from an unsecured permanent monitoring well located east of the missile Coffin. Depth to water 20.41 ft (from top of well housing). Total depth 23.24 ft from tep of well housing. Purged approximately 2 gallers before Sampling. Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge	· -						· · ·
(from top of well housing). Total Nepth 23.24 ft from top of well housing. Purged approximately 2 gallons before Sampling. Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge		La Como an	1.051	. and	Dermenan	t moniterine	well
(from top of well housing). Total Nepth 23.24 ft from top of well housing. Purged approximately 2 gallons before Sampling. Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge	Collec	the tran an			(•••
(from top of well housing). Total Nepth 23.24 ft from top of well housing. Purged approximately 2 gallons before Sampling. Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge		· · · · · · · ·	and the	·	noth !	ka makar 2	OHI FF
Scivel housing. Purged approximately 2 gallons before Sampling- Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge	locate	I past or the	W ADINE	Cotte	n- Odin	10 hancie. 2	- · · · ·
Scivel housing. Purged approximately 2 gallons before Sampling- Well casing is 2" prc. * Could only collect 3 ambers due to slow well recharge	1 from	top of will h	ousing	1. Tol	al depth	23.24 ft	from top ;
Sampling- Werl casing is a rul. * Could only collect 3 ambers due to slow will recharge		cell homesing	Purc	ud ap	proximately	2 gallons 1	sefore
* Could only collect 3 ambers due to slow will recharge		9		· 3 2'	Pre-	0	· · · ·
* Could only collect 3 ambers due to slow will recharge		oling- Well U	osing				
	Gor	$\mathbf{V} = \mathbf{O}$					
Sample Collected By: RM	Gor	ald only collect	3 ambe	rs Cu	e to slow	nell recha	uð.

1 of 1

*SR Number: 33	24 Sample Number	: 110	QC Co	de: FB Ma	trix: Water	Tag I	D: 3324-110-FB
Project ID: P		<u> </u>		ject Manage	er: Paul Roem	nermar)
City: Al	orbes (EX) Atlas Missile Ien	Site S-5	- PA sa		e: Kansas		
Program: St				500			
•	ulti-Site - General				Site ID:	07ZZ	Site OU: 00
Location Desc: T	emp. GW Field Blank sa	ample					
		Externa	al Samp	le Number:			
Expected Conc:	(or Circle One:		Medium	High)	Date		Time(24 hr)
Latitude: _		Samp	ole Colle	ection: Start	: 01/16/0-	7	17:15
Longitude: _				End	: _/_/_		_:
Laboratory Analy	/ses:						
Container	Preservative	Holding	Time	Analysis			
1 - 1 Liter Cubitainer	4 Deg C	28	Days	1 Perchlorate	in Water by IC		
1-1-Liter Cubitainer		28	Days	_1_Mercury in V	Vater.		
11 Liter Cubitainer	HNO3-acidify; 4 Deg C		-Days		ssolved, in Wate		
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in Wa	ater by ICP/MS	and n	`\
1 - 1 Liter Cubitainer -	HNO3 to pH<2	180	Days	1 Metals - Dis	solved, in Water	BY ICP/	15 and the
128oz amber glass	4 Deg C	7	Days	1 Semi-Volatil	e Organic Compo	ounds in	Water
128oz amber glass	4 Deg C	7	Days	1 Pesticides in	Water by GC/EC	2	
ı - 128oz amber glass	4 Deg C	7	Days	1 TPH Semi-vo	olatile in Water b	y GC/FI	D
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatile	s in water by GC,	/MS	
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days .	1 VOCs in Wat	er by GC/MS for	Low Det	ection Limits

Sample Comments:

(N/A)

Sample Collected By: RM

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

Project ID: PRI Project Desc: For City: Alle Program: Suj Site Name: Mu	bes (EX) Atlas Missile S en perfund	-	npling	r: Paul Roemerma e: Kansas Site ID: 07ZZ	
Location Desc: D\	•				· · ·
	E:	xternal Sampl	e Number:	10 - 01	
Expected Conc:	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude: Longitude:	<u> </u>	Sample Colle	ction: Start End	: <u>01/17/0</u> 7 : _/_/_	1 <u>5:40</u> _:
Laboratory Analy Container 1 - 1 Liter Cubitainer	Preservative 4 Deg C	Holding Time 28 Days	Analysis 1 Perchlorate i	:	
L – 1 Liter Gubitainer L – 1 Liter Cubitainer L – 128oz amber glass L – 128oz amber glass L – 128oz amber glass	-5 mL of HN03/L to pH<2 HNO3 to pH<2 4 Deg C 4 Deg C 4 Deg C	28 Days 180 Days 7 Days 7 Days 7 Days 7 Days	2 Semi-Volatile 1 Pesticides in 1 TPH Semi-vo	ter by ICP/MS Merca organic Compounds i Water by GC/EC ممؤ latile in Water by GC/F	n Water 化氏
L - 128oz amber glass 2 - 40mL VOA vial 4 - 40mL VOA vial	4 Deg C 4 Deg C 4 Deg C, HCL to pH<2	14 Days 14 Days 14 Days	1 TPH Volatiles	e r by GC/MS-SIM – in water by GC/MS king Water by GC/MS	
Sample Comments N/A)	•				
1 V A)	Owner Elizabeth Bu 328 Road 37 Council Grove	10	tle	Water Quality T= 8.37 Cond=761	<u></u>
Call of Sam	-pla from owners			PH = 7.27 ORP = 32.	2
Sample collec	led from spigot n	ear barn.	· ·		
Sample Collected	By: RM			· · ·	

1 of 1

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number: 332	4 Sample Number	: 202 QCC	ode: Mat	rix: Water Tag	ID: 3324-202
Project ID: PRI Project Desc: For	FEXAMS5 bes (EX) Atlas Missile			Paul Roemerm	an
City: Alle			State	: Kansas	
Program: Sup Site Name: Mu				Site ID: 0722	Site OU: 00
Location Desc: DV				0 00	
		External San	nple Number:	<u>Uw-01</u>	
Expected Conc:	(or Circle One:	: Low Mediu	n High)	Date	Time(24 hr)
Latitude:		Sample Co	llection: Start:	<u>ci /is /o</u>	1 <u>0 :35</u>
Longitude:			End:	/	
Laboratory Analy					· ·
Container	Preservative		Analysis 1 Perchlorate ir	Water by IC	
1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer	4 Deg C 5 mL of HNO3/L to pH<2	28 Days 			
L - 1 Liter Cubitainer	HNO3 to pH<2	180 Days		er by ICP/MS (m ^{ol}	Mercury
L - 128oz amber glass	4 Deg C	7 Days		Organic Compounds	
L - 1280z amber glass	4 Deg C	7 Days		Water by GC/EC &	
1 - 1280z amber glass	4 Deg C	7 Days		atile in Water by GC	
1 - 12802 amber glass				T by GC/M5-SIM_	
2 - 40mL VOA vial	4 Deg C	14 Days		in water by GC/MS	
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14 Days		king Water by GC/MS	; : ,
Sample Comments	5				
(N/A)	Owner .				•
	Norman Tri	emer			
	Norman Tri 334 Highway	y 56			· ·
	Conneil Gre	re, KS b	6846	1. C /	1
L	Well is about	25 Ft der	p. Well is	south of ho	where Close where the set of the set for elements
•	Well is about to creek. W House is connec	all was in:	talled ~ 1905 i water	1 62 ° C	(
	House is conner	Water Que	ality: T= Cond=	607	• .
	·		рН= ⁻	7.9	
Sample Collected	By: RM		pn- ORF=	-4,2	
• •	• .	1 of 1	1		

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number: 3324	Sample Number	: 209 QC Cod	le: FB Mat	rix: Water Tag I	(D: 3324-209-FB
Project ID: PRFE Project Desc: Forbe			-	: Paul Roemerma	n
City: Allen	rfund		State	: Kansas	ł
Program: Supe Site Name: Multi				Site ID: 072Z	Site OU: 00
Location Desc: DW/	(TPH VOA (OA-1) Tri	p Blank sample			
		External Samp			·
Expected Conc:	(or Circle One	Low Medium	High)	Date	Time(24 hr)
Latitude: Longitude:	·; 	Sample Colle	ection: Start: End:	01/18/6)	<u>([:\$</u> 7 :
- 40mL VOA vial	e S: Preservative 4 Deg C 4 Deg C, HCL to pH<2	Holding Time 14 Days 14 Days		in water by GC/MS Ing Water by GC/MS	
ample Comments:	·····				· · · · · · · · · · · · · · · · · · ·
N/A) Some to	ip blank cont ? monitoring u	aivers broke	Not enou	gh containers	to do
a tema	p monitoring u	nell trip blan	.K		
	· .			· ·	· · ·
	· .	· ·			· ·
					. · ·
•				. ·	
· · ·				• .	
Sample Collected By	7: RM	·	• • •		

1 of 1

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

5÷.

ACTIVITY LEADER(Print) NAME OF SURVEY OR ACTIVITY DATE OF COLLECTION - SHEET Pauli Roemerman Forbes Atlas 5-5 Day MONTH YEAR 1 01												
Pauli Rol		<u>an</u>	For	bes_	Atlas	<u></u> 5-	-5					DAY MONTH YEAR of /
CONTENTS OF SHIP	MENT											
SAMPLE	CUBITAINER		E OF CONTAIN	ERS	VOA	SET	5	SAMP	2LEO 7		other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER			BOTTLE	BOTTL AMPLE NU	LE (2 VIA	LS EA)	water	Soi	sediment	gust		(condition of samples upon receip). other sample numbers, etc.)
3324-26		3			6	}	<u>ا</u>	-	X			· · · · · · · · · · · · · · · · · · ·
3324-27		3			6		1		x			
3324-28		_3			U V)			Х			
3324-29		3	<u></u>		L	?			X			
3324-101	3		3			>	X					
3324-201	a	· ۽ ·	4			12	x					Extra volume
3324-202	_2	· ·	4		l	0	X					
3324-209-17	5			L	(Q	X					
3324-25-FB						9		X				
3324-19		3			12	r						Extra volume.
				_								and a set of the set
										·		
												•
				-								
											Ł	
DESCRIPTION OF SH	IPMENT				MODE C	IF SHI	PME	NT				
PIECE(S) CO	NSISTING OF		BOX(ES)		c	OMME	RCIA	L C/	A RR	IER:		
	s): other					ouriei Ample		1.11.71		n		
PERSONNEL CUSTOD												(SHIPPING DOCUMENT; NUMBER)
RELINQUISHED BY (DATE	TIME	R	ECEIVED	3Ϋ, c					-	REASON FOR CHANGE OF CUSTODY
		61/18	1/100	3. <	RA	Jia	4	<u> </u>	~~	r		Drop off at USEPA Rol
SEALED	UNSEAL	<u> </u>			SEALED	00	0	JNS	EA	LEC	ъЖ	
RELINQUISHED BY		DATE	TIME		ECEIVED	ΞY						REASON FOR CHANGE OF CUSTODY
SEALED	UNSEALE	٥d			SEALED			UNS	5EA	LEI	٥П	
RELINQUISHED BY		DATE	TIME	R	ECEIVED	BY						REASON FOR CHANGE OF CUSTODY
	UNSEALE			Ŀ	SEALED			UN	SEA	LF	h	
SEALED	UNJEALE											

7-EPA-9262(Revised 5/85)

.

*U.S. GPO: 2002-756-917/40053

Ĵ

ALTER TANK

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER(P			N	AME C	OF SURVE	Y OR ACTIVIT	Y	;	<u> </u>		Ī	DATE OF COLLECTION SHEET
Paul Rove		l	1	Forl	RS E	Atlas	2	5	5	-		DAY MONTH YEAR 1 of
CONTENTS OF SHIP	MENT		E OF CO		05		1 -		150			
SAMPLE NUMBER	CUBITAINER	BOTTLE	BOTT			VOA SET			LED		other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples' upon receipt,
NUWIDER		ERS OF CONT		1	BOTTLE MPLE NUMB	(2 VIALS EA)	water	soil	sediment	dust		other sample numbers, etc.}
3324-1		3			1	12		X				Extra volume.
3324-2		3			·	le	· ·	X				
3324-3		3				6		X				
3324-4		3				6		Х				
3324-5		3				6		X				
3324-6		3				6		X				
3324-7		3				6		X				
3324-8		3				6		X				
3324-9		3				6		X				
3324-10		3				6		×				
										_		-
										_		
			-		<u>.</u>		\square					
								_	$ \downarrow$			
							\square	_		_	_	
								-				
								_				
								$ \downarrow$	_	_		
									_			
								_			$ \downarrow$	
· · ·								_				
· · ·		<u> </u>									<u>.</u>	
DESCRIPTION OF SH	IPMENT					MODE OF SHI	PME	NT				
PIECE(S) CO	INSISTING OF	1	_ BOX(ES)				L C/	ARRI	ER:	_ ç	IdEx
	s): Other					COURIE		אועו		h		(SHIPPING DOCUMENT NUMBER)
						OAM/ EL						(SHIPPING DOCUMENT NOIMBER)
PERSONNEL CUSTOL		DATE		TIME	REC	EIVED BY		_			÷	REASON FOR CHANGE OF CUSTODY
141	hip		1	1300		Feder						Ship to Lab
SEALED	ONSEALE				, SE		i	- NC	EAI	LED	<u>, प</u>	REASON FOR CHANGE OF CUSTODY
RELINQUISHED BY	i ter	DATE	•	тіме	REU	EIVED BY						ACASULT ON CHANGE OF COSTOOT
SEALED	UNSEALE	ord				ALED		UNS	SEA	LE	эΠ	
RELINQUISHED BY		DATE	: 1	TIME		EIVED BY						REASON FOR CHANGE OF CUSTODY
					<i>.</i> -	ALED _			SEA		$^{-1}$	
SEALED	UNSEALE					~LEU _		ψiN.	JLM		<u> </u>	

7-EPA-9262(Revised 5/85)

s 1

į

1

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

. . .

. . ..

. . .

, ,	ACTIVITY LEADER(P Paul Reven	rint)		NAN	AE OF SUR	VEY C	Attas		. 5			0	DAY MONTH YEAR I OI
	CONTENTS OF SHIP					-K						-	
	SAMPLE NUMBER		80TTLE	BOTTLE	AINERS BOTTL R SAMPLE NU		VOA SET (2 VIALS EA)	water	AMP	lieut	MED	IA Other	RECEIVING LABORATORY REMARKS:OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)
	3324-1		3				12		X				Extra velume.
	3324-2		£				جا		X				
	3324-3		3				6		X				
	3324-4		3				6		X				
	3324-5		3				b		X				
	3324-6		3				6		X				
	3324-7		3				ما		X		_		
	3324-8		2 m m m m				6		K	-	-		
	3324-9		3				6		X	\rightarrow	_		
	3324-10		3				ie 🛛		×	_	·		
											_		······································
									-				
										\dashv			
$\left(\right)$											\rightarrow		
Ì				- <u> </u>					-+	-+			
				, ·						-+	-		
										-+			
										-+	-+		
										-+	-		
			· ·							-+	-		
										+	╉		
										-+	┥	\dashv	
									•			•••	
	DESCRIPTION OF SH					мс	DE OF SHI	PME	NT	لىسى . ر		1	
						5						F	UEX
		NSISTING OF		_ BOX(E2)			COURIER				1211.		
	ICE CHEST(S	S): OTHER			<u>*</u>		SAMPLE	R C	ONVI	EYE)		(SHIPPING DOCUMENT NUMBER)
	PERSONNEL CUSTOR		- I										REASON FOR CHANGE OF CUSTODY
	RELINQUISHED BY	SAUPLER)		E TH		ECEN Cu	AC						
	ISEALED	UNSEALED		"07		SEA	LED	1	ÛNŞ	EA	ĻĒĒ	, H	Dhip to Lab
	RELINQUISHED BY		DATE	ד דו	ME R	ECEN	ED BY						REASON FOR CHANGE OF CUSTODY
	SEALED	UNSEALEI			\square	SEAL	ED .		UNS	5EA	LE	니	
	RELINQUISHED BY		DATE	E TI			VED BY						REASON FOR CHANGE OF CUSTODY
	SEALED	UNSEALE	~]		SEAL	ED		UN	SEA	LE	٥Ĥ	

7-EPA-9262(Revised 5/85)

۰.

'U.S. GPO: 2002-756-917/40053

ŝ

APPENDIX E

10-1 - 1 - 1

 - -

•

.

ANALYTICAL RESULTS

• 2

United States Environmental Protection Agency Region 7 901 N. 5th Street Kansas City, KS 66101

Date: 02/23/2007

Subject: Transmittal of Sample Analysis Results for ASR #: 3324 Project ID: PRFEXAMS5 Project Description: Forbes (EX) Atlas Missile Site S-5 - PA sampling

From: Dale I. Bates, Director Regional Laboratory, Environmental Services Division

To: Paul Roemerman SUPR/MOKS

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the enclosed Customer Satisfaction Survey and Data Disposition/Sample Release memo for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Data Disposition/Sample Release memo.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

cc: Analytical Data File.

Summary of Project Information

02/23/2007

....

Project Manager:	Paul Roemerman	Org: SUPR/MOKS	Phone: 913-5	51-7694
Project ID:	PRFEXAMS5			
Project Desc:	Forbes (EX) Atlas Missile Site S	-5 - PA sampling		
Location:	Allen	State: Kansas	Program: Superf	und
Site Name:	Multi-Site - General		Site ID: 07ZZ	Site OU: 00
Purpose:	Site Characterization		GPRA PRC: 302DD	2C
	CERCLIS ID: KSN000703129			
E	Explanation of Codes, Units a	nd Qualifiers used	on this report	
	QC Codes identify the type of sample for quality control purpe		units in which results	s are
	= Field Sample	%	= Percent	
	FB = Field Blank	mg/L	= Milligrams per Lite	r

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank)= Values have been reviewed and found acceptable for use.

- J = The identification of the analyte is acceptable; the reported value is an estimate.
- R = The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

mg/kg = Milligrams per Kilogram ug/L = Micrograms per Liter ug/kg = Micrograms per Kilogram

- U = The analyte was not detected at or above the reporting limit.
- UI = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

Sample Information Summary

02/23/2007

Project ID: PRFEXAMS5

Project Desc: Forbes (EX) Atlas Missile Site S-5 - PA sampling

Sample No		Matrix	Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1-	_	Solid	Soil sample (SB-01, 0-2')		01/15/2007	14:15	01/15/2007	14:53	01/17/2007
2 -		Solid	Soil sample (SB-01, 16-18')		01/15/2007	15:14			01/17/2007
3 -	_	Solid	Soil sample (SB-02, 0-2')		01/15/2007	16:00			01/17/2007
4 -		Solid	Soil sample (SB-03, 2-4')		01/15/2007	16:46			01/17/2007
5 -		Solid	Soil sample (SB-04, 0-2')		01/15/2007	17:20			01/17/2007
6 -		Solid	Soil sample (SB-04, 8-10')		01/15/2007	17:44			01/17/2007
7 -		Solid	Soil sample (SB-05, 0-2')		01/16/2007	09:50			01/17/2007
8 -		Solid	Soil sample (SB-05, 9-11')		01/16/2007	10:13			01/17/2007
9 -	_	Solid	Soil sample (SB-06, 0-2')	• <u>.</u>	01/16/2007	10:42			01/17/2007
10 -	— .	Solid	Soil sample (SB-06, 10-12')		01/16/2007	11:11			01/17/2007
11 -	_	Solid	Soil sample (SB-07, 0-2')		01/16/2007	14:03			01/17/2007
12 -	_	Solid	Soil sample (SB-07, 6-8')		01/16/2007	14:20			01/17/2007
13 -		Solid	Soil sample (SB-08, 0-2')		01/16/2007	14:43			01/17/2007
14 -	_	Solid	Soil sample (SB-08, 10-12')		01/16/2007	15:03			01/17/2007
15 -		Solid	Soil sample (SB-09, 0-2')		01/16/2007	15:20			01/17/2007
16		Solid	Soil sample (SB-10, 0-2')		01/16/2007	16:00			01/17/2007
17 -	_	Solid	Soil sample (SB-10, 4-6')		01/16/2007	16:18			01/17/2007
18		Solid	Soil sample (SB-11, 2-4')		01/16/2007	16:50			01/17/2007
19		Solid	Soil sample (SB-12)		01/18/2007	12:40			01/19/2007
25 - 1	FB	Solid	Soil 5035/TPH VOA Trip blank sample		01/18/2007	11:47			01/19/2007
26	_	Solid	Sediment sample (SED-01)		01/17/2007	09:45			01/19/2007
27 - <u>-</u>		Solid	Sediment sample (SED-02)		01/17/2007	10:12			01/19/2007
28		Solid	Sediment sample (SED-03)		01/17/2007	10:47			01/19/2007
29		Solid	Sediment sample (SED-04)		01/19/2007	12:26			01/19/2007
101	_	Water	GW sample (MW-01)		01/17/2007	12:20	01/18/2007	12:45	01/19/2007
110 - F	FB	Water	Temp. GW Field Blank sample		01/16/2007	17:15			01/17/2007
201		Water	DW sample (01) private well from spigot near barn		01/17/2007	15:40			01/19/2007
202			DW sample (02) - South of house close to creek		01/18/2007	10:35			01/19/2007
209 - F	FB		DW/TPH VOA (OA-1) Trip Blank sample		01/18/2007	11:57			01/19/2007

........

RLAB Approved Analysis Comments

Project ID:PRFEXAMS5 Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

1 Mercury in Soil or Sediment

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples:	1	2	3	4	5	6	7
	8		10		12	13	14
	15	16	17	18	19	26	27
	28-	29-					

Comments:

(N/A)

1 Metals in Solids by ICP

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples:	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
	15	16	17	18	19	26	27
	28	29-					

Comments:

Slight beryllium and lead contamination were found in the preparation and/or calibration blanks. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: beryllum in -19, -26, and -28 and lead in -2.

Selenium in samples -1 through -19 and -26 through -29 and beryllium in samples -2, -3, -6, and -12 were UJ-coded and beryllium in samples -1, -4, -5, -7 through -11, and -13 through -18 was J-coded. Positive results were J-coded and non-detect results were UJ-coded due to negative recoveries of these analytes in the interference check samples (ICS) which were not present in the ICS solution but whose absolute values were greater than the method detection limits (MDL), therefore, a possibility of false negatives exists. The actual reporting limits may be higher than the reported values.

Antimony and selenium in samples -1 through -18, antimony in samples -19 through -29, and arsenic in sample -17 were UJ-coded. These analytes were not found in the samples at or above the reporting limits, however, the reporting limits are an estimate (UJ-coded) due to low recoveries of these analytes in the laboratory matrix spike. The actual reporting limits for these analytes may be higher than the reported values.

Arsenic in samples -1 through -16 and -18, lead in samples -19 through -29, and manganese in samples -1 through -18 were J-coded. Although the analytes in question have been positively identified in the samples, the quantitations are an estimate (J-coded) due to low recoveries of these analytes in the laboratory matrix spike. The actual concentrations for these analytes may be higher than the reported values.

Page 4 of 44

RLAB Approved Analysis Comments

02/23/2007

Project ID:PRFEXAMS5 Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

Calcium in samples -1 through -18 and arsenic, iron, and vanadium in samples -19 through -29 were J-coded. Although the analytes in question have been positively identified in the samples, the quantitations are an estimate (J-coded) due to poor precision obtained for these analytes in the laboratory duplicate samples.

Lead in samples -1 and -3 through -18 was J-coded and lead in sample -2 was UJ-coded. Positive results were J-coded and non-detect results were UJ-coded due to the serial dilution percent differences being above the control limits. The actual concentrations for lead may be higher than the reported values.

1 PCBs in Soil by GC/EC

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples:	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
	15	16	17	18	19	26	27
	28	2 9					

Comments:

Aroclor 1248 was UJ-coded in samples -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, and -18. This analyte was not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the PE sample. The actual reporting limit for this analyte may be higher than the reported value.

1 Percent Solid

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3142.9D

Samples:	1	2	3	4	5	6	7
	8	9	10	11	12 	13	14
	15	16	17	18	19	25-FB	26
	27	28	29				

Comments:

(N/A)

Perchlorate in Soil by IC

1

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA Region 7 RLAB Method 3135.9B (see comments)

Samples:	1	2	3	4	5	6	7
				11			14
	15	16	17	18	19	26	27
	28	29					

Comments:

Project ID:PRFEXAMS5 P

Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

1 Semi-Volatile Organic Compounds in Soil

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples:	1	2	3	4	5	6	7
		9			12	13	14
	15	16	17	18	19	26	27
	28	29					

Comments:

Benzo(a)anthracene, chrysene, fluoranthene, and pyrene in samples -1, -4, and -11 and benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoroanthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene in samples -1, -2, -4, -8, -11, and -14 were UJ-coded. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of the surrogate analytes. The actual reporting limit for these analytes may be higher than the reported value.

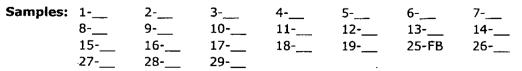
Pyrene was UJ-coded in sample -3. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

1 TPH Semi-Volatile in Soil by GC/FID

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA Region 7 RLAB Method 3270.1C (see comments)

Samples:	1	2	3	4	5	6	7
	8			11		13	14
	15				19	26	27
	28	29					


Comments:

All soil samples except 3324-8 and 3324-28 exhibited a weathered pattern. The pattern observed in the samples did not exactly match that of any target fuel used in calibration. However, #6 fuel oil was the analyte that most closely resembled the pattern seen in the field samples and were quantitated as such.

1 TPH Volatiles in Soil by GC/MS

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3230.19A

Page 6 of 44

RLAB Approved Analysis Comments

02/23/2007

Project ID:PRFEXAMS5 **Project Desc** Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

Comments:

The reporting limit for sample 29 was raised due to the sample weight and the percent moisture (all data is reported on a dry weight basis).

Sample 8 did not contain the gasoline pattern. However, there was a diesel/motor oil type of pattern present. The analytes that are common to both the gasoline and diesel/motor oil patterns, were below the reporting limit.

1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples:	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
	15	16	17	18	19	25-FB	26
	27	28	29				

Comments:

m,p-Xylene was J-coded in samples -7 and -26. Although the analyte in question has been positively identified in the samples, the quantitation is an estimate (J-coded) due to high recovery of a surrogate analyte in these samples. The actual concentration for this analytes may be lower than the reported value.

Acetone, benzene, 2-butanone, m,p-xylene, and o-xylene were J-coded in sample -1. Although the analytes in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to low internal standard response. The actual concentration for these analytes may be lower than the reported value.

Internal standards in sample -1 had unacceptable response indicating that is was not possible to obtain valid results for non-detect analytes. Results of 'N/A' were reported with R-codes for these analytes.

Internal standards in samples -19, -26, -28, and -29 had unacceptable response indicating that is was not possible to obtain valid results for bromoform, 1,2-dibromo-3-chloropropane, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene. Results of 'N/A' were reported with R-codes for these analytes.

Benzene was J-coded in sample -1. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to high recovery of this analyte in the laboratory matrix spike. The actual concentration for this analyte may be lower than the reported value.

Benzene in sample -1 and methylcyclohexane in sample -14 were J-coded. Although the analytes in question has been positively identified in the samples, the quantitation is an estimate (J-coded) due to high recovery of these analytes in the performance evaluation sample. The actual concentration for these analytes may be lower than the reported value.

RLAB Approved Analysis Comments

02/23/2007

Project ID:PRFEXAMS5 Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

Mercury - Dissolved, in Water
 Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-___

Comments:

(N/A)

1 Mercury in Water

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-____ 110-FB 201-____ 202-___

Comments:

(N/A)

1 Metals - Dissolved, in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-___

Comments:

Slight copper and zinc contamination were found in the preparation blank. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: copper and zinc in -101.

Thallium in sample -101 was UJ-coded. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to negative recovery of this analyte in the interference check samples (ICS) which was not present in the ICS solution but whose absolute value was greater than the method detection limit (MDL), therefore, a possibility of false negatives exists. The actual reporting limit may be higher than the reported value.

Zinc was UJ-coded in sample -101. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for this analyte in the laboratory duplicate sample. The actual reporting limit for this analyte may be higher than the reported value.

Barium and manganese in sample -101 were J-coded. Although the analytes in question have been positively identified in these samples, the quantitations are an estimate (J-coded) due to the serial dilution percent differences being above the control limits. The actual concentrations for barium and manganese may be higher than the reported values.

RLAB Approved Analysis Comments

02/23/2007

į

Project ID:PRFEXAMS5 Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

1 Metals in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-____ 110-FB 201-___ 202-___

Comments:

Slight copper and lead contamination were found in the preparation blank. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: copper in -101 and -201 and lead in -101.

Thallium in samples -101, -110FB, and -201 was UJ-coded. This analyte was not found in the samples at or above the reporting limits, however, the reporting limits are an estimate (UJ-coded) due to negative recovery of this analyte in the interference check samples (ICS) which was not present in the ICS solution but whose absolute value was greater than the method detection limit (MDL), therefore, a possibility of false negatives exists. The actual reporting limits may be higher than the reported values.

Zinc was UJ-coded in sample -110FB. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for this analyte in the laboratory duplicate sample. The actual reporting limit for this analyte may be higher than the reported value.

Zinc was J-coded in samples -101, -201, and -202. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to poor precision obtained for this analyte in the laboratory duplicate sample.

1 PAH's in Water by GC/MS-SIM

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA SW846 Method 8270D using SIM (see comments)

Samples: 201-____ 202-___

Comments:

(N/A)

1 Perchlorate in Water by IC

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA Region 7 RLAB Method 3135.9B (see comments)

Samples: 101-___ 110-FB 201-___ 202-___

Comments:

1 Pesticides in Water by GC/EC

RLAB Approved Analysis Comments

02/23/2007

Project ID:PRFEXAMS5 Project Desc Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

Lab: Contract Lab Program (Out-Source) Method: CLP Statement of Work Samples: 101-____ 110-FB 201-____ 202-___

Comments:

(N/A)

1 Semi-Volatile Organic Compounds in Water Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-____ 110-FB

Comments:

2 Semi-Volatile Organic Compounds in Water Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-____ 202-____

Comments:

1 TPH Semi-volatile in Water by GC/FID Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA Region 7 RLAB Method 3270.1C (see comments)

Samples: 101-____ 110-FB 201-____ 202-___

Comments:

(N/A)

1 TPH Volatiles in water by GC/MS

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3230.19A

Samples: 101-____ 110-FB 201-____ 202-___ 209-FB

Comments:

1 VOCs in Drinking Water by GC/MS

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.9C

Samples: 201-___ 202-___ 209-FB

Page 10 of 44

02/23/2007

Project ID:PRFEXAMS5 **Project Desc** Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis Comments About Results For This Analysis

Comments:

Dichlorodifluoromethane was UJ-coded in samples 201, 202, and 209-fb. This analyte was not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to the continuing calibration check not meeting accuracy specifications. The actual reporting limit for this analyte may be higher than the reported value.

Carbon Disulfide was UJ-coded in sample 202. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

1 VOCs in Water by GC/MS for Low Detection Limits

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3230.13C

Samples: 101-____ 110-FB

Comments:

Dichlorodifluoromethane, Chloromethane, and Acetone were UJ-coded in samples 101 and 110-FB. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to the continuing calibration check not meeting accuracy specifications. The actual reporting limit for these analytes may be higher than the reported value.

Bromoform, Chlorobenzene, 1,2-Dibromo-3-Chloropropane, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, trans-1,3-Dichloropropene, 2-Hexanone, 4-Methyl-2-Pentanone, Naphthalene, and 1,1,2,2-Tetrachloroethane were UJ-coded in sample 101. These analytes were not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for these analytes may be higher than the reported value.

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	1	2	3	4
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.123 U	0.102 U	0.131 U	0.135 U
1 Metals in Solids by ICP					
Aluminum	mg/kg	18300	1250	12500	17700
Antimony	mg/kg	7.39 UJ	6.13 UJ	7.39 UJ	7.07 UJ
Arsenic	mg/kg	6.51 J	1.93 J	4.96 J	5.95)
Barium	mg/kg	169	40.5	136	178
Beryllium	mg/kg	0.800 J	0.511 UJ	0.616 UJ	0.811)
Cadmium	mg/kg	0.616 U	0.511 U	0.616 U	0.589 U
Calcium	mg/kg	29700 J	5280 J	8250 J	3760 J
Chromium	mg/kg	21.3	2.67	16.2	21.4
Cobalt	mg/kg	9.73	5.11 U	6.16 U	5.89 U
Copper	mg/kg	16.6	2.55 U	8.12	12.0
Iron	mg/kg	20200	2940	11300	16600
Lead	mg/kg	12.5 J	2.22 UJ	24.6 J	14.0 J
Magnesium	mg/kg	5270	511 U	2010	2340
Manganese	mg/kg	452 J	84.5 J	210 J	329 J
Nickel	mg/kg	22.6	4.09 U	12.5	14.4
Potassium	mg/kg	2760	511 U	1390	1730
Selenium	mg/kg	4.31 UJ	3.58 UJ	4.31 UJ	4.12 UJ
Silver	mg/kg	1.23 U	1.02 U	1.23 U	1.18 U
Sodium	mg/kg	616 U	511 U	616 U	589 U
Thallium	mg/kg	3.08 U	2.55 U	3.08 U	2.94 U
Vanadium	mg/kg	32.4	7.64	23.7	38.5
Zinc	mg/kg	49.3	7.34	40.9	43.5
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1221	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1232	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1242	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1248	ug/kg	39 UJ ⁻	34 UJ	44 U)	43 U)
Aroclor 1254	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1260	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1262	ug/kg	39 U	34 U	44 U	43 U
Aroclor 1268	ug/kg	39 U	34 U	44 U	43 U
1 Percent Solid					
Solids, percent	%	79.5	97.9	79.1	78.3
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.39 U	0.29 U	0.42 U	0.4 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	210 U	180 U	210 U	200 U
Acenaphthylene	ug/kg	210 U	180 U	210 U	200 U
Acetophenone	ug/kg	210 U	180 U	210 U	200 U
Anthracene	ug/kg	210 U	180 U	210 U	200 U
Atrazine	ug/kg	210 U	180 U	210 U	200 U
Benzaldehyde	ug/kg	210 U	180 U	210 U	200 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	1	2	3	4
Benzo(a)anthracene	ug/kg	210 UJ	180 U	210 U	200 U3
Benzo(a)pyrene	ug/kg	210 UJ	180 UJ	210 U	200 U)
Benzo(b)fluoranthene	ug/kg	210 UJ	180 UJ	210 U	200 UJ
Benzo(g,h,i)perylene	ug/kg	210 U	180 U	210 U	200 U
Benzo(k)fluoranthene	ug/kg	210 UJ	180 UJ	210 U	200 ເມ
Biphenyl	ug/kg	210 U	180 U	210 U	200 U
bis(2-Chloroethoxy)methane	ug/kg	210 U	180 U	210 U	200 U
bis(2-Chloroethyl)ether	ug/kg	210 U	180 U	210 U	200 U
bis(2-Chloroisopropyl)ether	ug/kg	210 U	180 U	210 U	200 U
bis(2-Ethylhexyl)phthalate	ug/kg	210 U	180 U	210 U	200 U
4-Bromophenyl-phenylether	ug/kg	210 U	180 U	210 U	200 U
Butylbenzylphthalate	ug/kg	210 U	180 U	210 U	200 U
Caprolactam	ug/kg	210 U	180 U	210 U	200 U
Carbazole	u g/k g	210 U	180 U	210 U	200 U
4-Chloro-3-methylphenol	ug/kg	210 U	180 U	210 U	200 U
4-Chloroaniline	ug/kg	210 U	180 U	210 U	200 U
2-Chloronaphthalene	ug/kg	210 U	180 U	210 U	200 U
2-Chlorophenol	ug/kg	210 U	180 U	210 U	200 U
4-Chlorophenyi-phenylether	ug/kg	210 U	180 U	210 U	200 U
Chrysene	ug/kg	210 UJ	180 U	210 U	200 UJ
Di-n-butylphthalate	ug/kg	210 U	180 U	210 U	200 U
Di-n-octylphthalate	ug/kg	210 U	180 U	210 U	200 U
Dibenz(a,h)anthracene	ug/kg	210 UJ	180 UJ	210 U	200 UJ
Dibenzofuran	ug/kg	210 U	180 U	210 U	200 U
3,3'-Dichlorobenzidine	ug/kg	210 U	180 U	210 U	200 U
2,4-Dichlorophenol	ug/kg	210 U	180 U	210 U	200 U
Diethylphthalate	ug/kg	210 U	180 U	210 U	200 U
2,4-Dimethylphenoi	ug/kg	210 U	180 U	210 U	200 U ·
Dimethylphthalate	ug/kg	210 U	180 U	210 U	200 U
4,6-Dinitro-2-methylphenol	ug/kg	410 U	340 U	410 U	400 U
2,4-Dinitrophenol	ug/kg	410 U	340 U	410 U	400 U
2,4-Dinitrotoluene	u g/ kg	210 U	180 U	210 U	200 U
2,6-Dinitrotoluene	ug/kg	210 U	180 U	210 U	200 U
Fluoranthene	ug/kg	210 UJ	180 U	210 U	200 UJ
Fluorene	ug/kg	210 U	180 U	210 U	200 U
Hexachlorobenzene	ug/kg	210 U	180 U	210 U	200 U
Hexachlorobutadiene	ug/kg	210 U	180 U	210 U	200 U
Hexachlorocyclopentadiene	ug/kg	210 U	180 U	210 U	200 U
Hexachloroethane	ug/kg	210 U	180 U	210 U	200 U
Indeno(1,2,3-cd)pyrene	ug/kg	210 UJ	180 UJ	210 U	200 UJ
Isophorone	ug/kg	210 U	180 U	210 U	20 0 U
2-Methylnaphthalene	ug/kg	210 U	180 U	210 U	200 U
2-Methylphenol	ug/kg	210 U	180 U	210 U	200 U
4-Methylphenol	ug/kg	210 U	180 U	210 U	200 U
Naphthalene	ug/kg	210 U	180 U	210 U	200 U

Page 13 of 44

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	1	2	3	4
				,	
2-Nitroaniline	ug/kg	410 U	340 U	410 U	400 U
3-Nitroaniline	ug/kg	410 U	340 U	410 U	400 U
4-Nitroaniline	ug/kg	410 U	340 U	410 U	400 U
Nitrobenzene	ug/kg	210 U	180 U	210 U	200 U
2-Nitrophenol	ug/kg	210 U	180 U	210 U	200 U
4-Nitrophenol	ug/kg	410 U	340 U	410 U	400 U
N-nitroso-di-n-propylamine	ug/kg	210 U	180 U	210 U	200 U
N-nitrosodiphenylamine	ug/kg	210 U	180 U	210 U	200 U
Pentachlorophenol	ug/kg	· 410 U	340 U	410 U	4 00 U
Phenanthrene	ug/kg	210 U	180 U	210 U	200 U
Phenol	ug/kg	210 U	180 U	210 U	200 U
Pyrene	ug/kg	210 UJ	180 U	210 UJ	200 UJ
2,4,5-Trichlorophenol	ug/kg	210 U	180 U	210 U	200 U .
2,4,6-Trichlorophenol	ug/kg	210 U	180 U	210 U	200 U
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	mg/kg	82 U	68.6 U	83.1 U	82 U
1 TPH Volatiles in Soil by GC/MS	•				
Purgeable TPH	ug/kg	50 U	50 U	50 U	50 U
1 VOC's in Soil at Low Levels by GC/MS Close	d-System Purg	e-and-Trap			
Acetone	ug/kg	52 J	23 U	140	46
Benzene	ug/kg	6.4 J	11 U	6.6 U	6.0 U
Bromodichloromethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Bromoform	ug/kg	N/A R	11 U	6.6 U	6.0 U
Bromomethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
2-Butanone	ug/kg	16 J	23 U	20	12 U
Carbon Disulfide	ug/kg	N/A R	11 U	6.6 U	6.0 U
Carbon Tetrachloride	ug/kg	N/A R	11 U	6.6 U	6.0 U
Chlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0U.
Chloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Chloroform	ug/kg	N/A R	11 U	6.6 U	6.0 U
Chloromethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Cyclohexane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2-Dibromo-3-Chloropropane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Dibromochloromethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2-Dibromoethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2-Dichlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,3-Dichlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,4-Dichlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
Dichlorodifluoromethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1-Dichloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2-Dichloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1-Dichloroethene	ug/kg	N/A R	11 U	6.6 U	6.0 U
cis-1,2-Dichloroethene	ug/kg	N/A R	11 U	6.6 U	6.0 U
trans-1,2-Dichloroethene	u g /kg	N/A R	11 U	6.6 U	6.0 U
1,2-Dichloropropane	ug/kg	N/A R	11 U	6.6 U	6.0 U

. . . .

RLAB Approved Sample Analysis Results

02/23/2007

ويوقف ومعيون المحمد المتناد

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	1	2	3	4
cis-1,3-Dichloropropene	ug/kg	N/A R	11 U	6.6 U	6.0 U
trans-1,3-Dichloropropene	ug/kg	N/A R	11 U	6.6 U	6.0 U
Ethyl Benzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
2-Hexanone	ug/kg	N/A R	23 U	13 U	12 U
Isopropylbenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
Methyl Acetate	ug/kg	N/A R	11 U	6.6 U	6.0 U
Methyl tert-butyl ether	ug/kg	. N/A R	11 U	6.6 U	6.0 U
Methylcyclohexane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Methylene Chloride	ug/kg	N/A R	11 U	6.6 U	6.0 U
4-Methyl-2-Pentanone	ug/kg	N/A R	23 U	13 U	12 U
Styrene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1,2,2-Tetrachloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Tetrachloroethene	ug/kg	N/A R	11 U	6.6 U	6.0 U
Toluene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2,3-Trichlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,2,4-Trichlorobenzene	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1,1-Trichloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1,2-Trichloroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Trichloroethene	ug/kg	N/A R	11 U	6.6 U	6.0 U
Trichlorofluoromethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
1,1,2-Trichlorotrifluoroethane	ug/kg	N/A R	11 U	6.6 U	6.0 U
Vinyl Chloride	ug/kg	N/A R	11 U	6.6 U	6.0 U
m and/or p-Xylene	ug/kg	19 J	11 U	6.6 U	6.0 U
o-Xylene	ug/kg	6.3 J	11 U	6.6 U	6.0 U

RLAB Approved Sample Analysis Results

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	5	6	7	8
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.124 U	0.127 U	0.140 U	0.107 U
1 Metals in Solids by ICP					
Aluminum	mg/kg	16600	11700	17800	14300
Antimony	mg/kg	6.97 UJ	7.00 UJ	7.60 UJ	6.76 UJ
Arsenic	mg/kg	5.18 J	8.24 J	6.23 J	4.72 3
Barium	mg/kg	129	85.8	218	73.0
Beryllium	mg/kg	0.728 J	0.583 UJ	0.821 J	0.614]
Cadmium	mg/kg	0.581 U	0.583 U	0.633 U	0.564 U
Calcium	mg/kg	41800 J	118000 J	13800 J	107000 J
Chromium	mg/kg	25.0	22.2	19.2	23.6
Cobalt	mg/kg	11.4	7.63	9.46	10.2
Copper	mg/kg	17.5	19.1	12.8	14.9
Iron	mg/kg	19700	14400	16800	19100
Lead	mg/kg	7.73 J	19.3 J	24.9 J	4.79)
Magnesium	mg/kg	8650	5200	2610	8040
Manganese	mg/kg	340 J	278 J	579 J	352 J
Nickel	mg/kg	29.6	27.7	16.3	28.0
Potassium	mg/kg	3560	3620	2020	3420
Selenium	mg/kg	4.07 UJ	4.08 UJ	4.43 UJ	3.95 UJ
Silver	mg/kg	1.16 U	1.17 U	1.27 U	1.13 U
Sodium	mg/kg	581 U	583 U	633 U	564 U
Thailium	mg/kg	2.91 U	2.92 U	3.17 U	2.82 U
Vanadium	mg/kg	26.3	20.0	37.2	21.3
Zinc	mg/kg	48.2	33.9	46.8	38.8
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1221	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1232	ug/kg	39 U	40 U	41 U	37 U -
Aroclor 1242	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1248	ug/kg	39 UJ _	40 UJ	41 UJ	37 UJ
Aroclor 1254	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1260	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1262	ug/kg	39 U	40 U	41 U	37 U
Aroclor 1268	ug/kg	39 U	40 U	41 U	37 U
1 Percent Solid					
Solids, percent	%	85.9	89.3	76.3	86.3
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.37 U	0.36 U	0.44 U	0.33 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	200 U	210 U	220 U	190 U
Acenaphthylene	ug/kg	200 U	210 U	220 U	190 U
Acetophenone	ug/kg	200 U	210 U	220 U	190 U
Anthracene	ug/kg	200 U	210 U	22 0 U	190 U
Atrazine	ug/kg	200 U	210 U	220 U	190 U
Benzaldehyde	ug/kg	200 U	210 U	220 U	190 U

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	5	6	7	8
Benzo(a)anthracene	ug/kg	200 U	210 U	220 U	190 U
Benzo(a)pyrene	ug/kg	200 U	210 U	220 U	190 U)
Benzo(b)fluoranthene	ug/kg	200 U	210 U	220 U	190 UJ
Benzo(g,h,i)perylene	ug/kg	200 U	210 U	220 U	190 U
Benzo(k)fluoranthene	ug/kg	200 U	210 U	2 20 U	190 UJ
Biphenyl	ug/kg	200 U	210 U	220 U	190 U
bis(2-Chloroethoxy)methane	ug/kg	200 U	210 U	220 U	190 U
bis(2-Chloroethyl)ether	ug/kg	200 U	210 U	220 U	190 U
bis(2-Chloroisopropyl)ether	ug/kg	200 U	210 U	220 U	190 U
bis(2-Ethylhexyl)phthalate	ug/kg	200 U	210 U	220 U	190 U
4-Bromophenyl-phenylether	ug/kg	200 U	210 U	220 U	190 U
Butylbenzylphthalate	ug/kg	200 U	210 U	220 U	190 U
Caprolactam	ug/kg	200 U	210 U	220 U	190 U
Carbazole	ug/kg	200 U	210 U	220 U	190 U
4-Chloro-3-methylphenol	ug/kg	200 U	210 U	220 U	190 U
4-Chloroaniline	ug/kg	200 U	210 U	220 U	190 U
2-Chloronaphthalene	ug/kg	200 U	210 U	220 U	190 U
2-Chlorophenol	ug/kg	200 U	210 U	220 U	190 U
4-Chlorophenyl-phenylether	ug/kg	200 U	21 0 U	220 U	190 U .
Chrysene	ug/kg	200 U	210 U	220 U	190 U
Di-n-butylphthalate	ug/kg	200 U	210 U	220 U	190 U
Di-n-octylphthalate	ug/kg	200 U	210 U	220 U	190 U
Dibenz(a,h)anthracene	ug/kg	200 U	210 U	220 U	190 U)
Dibenzofuran	ug/kg	200 U	210 U	220 U	190 U
3,3'-Dichlorobenzidine	ug/kg	200 U	210 U .	220 U	190 U
2,4-Dichlorophenol	ug/kg	200 U	210 U	220 U	190 U
Diethylphthalate	ug/kg	200 U	210 U	220 U	190 U
2,4-Dimethylphenol	ug/kg	200 U	210 U	220 U	190 U
Dimethylphthalate	ug/kg	200 U	210 U	220 U	190 U
4,6-Dinitro-2-methylphenol	ug/kg	390 U	400 U	420 U	380 U
2,4-Dinitrophenol	ug/kg	390 U	400 U	420 U	380 U
2,4-Dinitrotoluene	ug/kg	200 U	210 U	220 U	190 U
2,6-Dinitrotoluene	ug/kg	200 U	210 U	220 U	190 U
Fluoranthene	ug/kg	200 U	210 U	220 U	190 U
Fluorene	ug/kg	200 U	210 U	220 U	190 U
Hexachlorobenzene	ug/kg	200 U	210 U	220 U	190 U
Hexachlorobutadiene	ug/kg	200 U	210 U	220 U	190 U
Hexachlorocyclopentadiene	ug/kg	200 U	210 U	220 U	190 U
Hexachloroethane	ug/kg	200 U	210 U	220 U	190 U
Indeno(1,2,3-cd)pyrene	ug/kg	200 U	210 U	220 U	190 UJ
Isophorone	· ug/kg	200 U	210 U	220 U	190 U
2-Methylnaphthalene	ug/kg	200 U	210 U	220 U	190 U
2-Methylphenol	ug/kg	200 U	210 U	2 2 0 U	190 U
4-Methylphenol	ug/kg	200 U	210 U	220 U	190 U
Naphthalene	ug/kg	200 U	210 U	220 U	190 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

2-Nitroaniline ug/kg 390 U 400 U 420 U 380 U 3-Nitroaniline ug/kg 390 U 400 U 420 U 380 U 4-Nitroaniline ug/kg 390 U 400 U 420 U 380 U Nitrobenzene ug/kg 200 U 210 U 220 U 190 U 2-Nitrophenol ug/kg 200 U 210 U 220 U 190 U 4-Nitrosod-ihnenybamine ug/kg 200 U 210 U 220 U 190 U N-nitrosod-ihnenybamine ug/kg 200 U 210 U 220 U 190 U Phenathwane ug/kg 200 U 210 U 220 U 190 U Phenathwane ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 50 U 50 U 50 U 50 U 1 TPH	Analysis/ Analyte	Units	5	6	7	8
3-Nitroanilline ug/kg 390 U 400 U 420 U 380 U 4-Nitroaniline ug/kg 390 U 400 U 420 U 380 U 4-Nitrophenol ug/kg 200 U 210 U 220 U 190 U 4-Nitrophenol ug/kg 390 U 400 U 420 U 380 U 4-Nitrosoci/n-propylamine ug/kg 200 U 210 U 220 U 190 U N-nitrosoci/n-propylamine ug/kg 200 U 210 U 220 U 190 U N-nitrosoci/n-phenol ug/kg 200 U 210 U 220 U 190 U Prena ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichforophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichforophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichforophenol ug/kg 50 U 50 U 50 U 20 U 1 TPH Socialis in Soil by GC/MS ug/kg 50 U 50 U 50 U 50 U						
4-Nitroanilline ug/kg 390 U 400 U 420 U 380 U Nitrobenzene ug/kg 200 U 210 U 220 U 190 U 2-Nitrophenol ug/kg 390 U 400 U 420 U 380 U Nitrophenol ug/kg 390 U 400 U 420 U 380 U N-Introsodiphenylamine ug/kg 390 U 400 U 420 U 380 U N-Introsodiphenylamine ug/kg 390 U 400 U 420 U 380 U Pinenanthrene ug/kg 200 U 210 U 220 U 190 U Pinenanthrene ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichorophenol ug/kg 50 U 50 U 50 U 50 U 1 TPH Semit-Volatile in Soll by GC/MS ug/kg 50 U 50 U 50 U 50 U 1 TPH Semit-Volatile in Soll by GC/MS ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	2-Nitroaniline	ug/kg	390 U	400 U	420 U	380 U
Nitrobenzene ug/kg 200 U 210 U 220 U 190 U 2-Nitrophenol ug/kg 200 U 210 U 220 U 190 U 4-Nitrophenol ug/kg 300 U 210 U 220 U 190 U N-nitroso-di-n-propylamine ug/kg 200 U 210 U 220 U 190 U N-nitroso-diphenylamine ug/kg 200 U 210 U 220 U 190 U Phenathrone ug/kg 200 U 210 U 220 U 190 U Phenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-fritchforophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-fritchforophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-fritchforophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Volatile in Soil by GC/MS moread-Trap Zeo U 200 U 210 U 220 U 190 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap <	3-Nitroaniline	ug/kg	390 U	400 U	420 U	380 U
2-Nitrophenol ug/kg 200 U 210 U 220 U 180 U 4-Nitrophenol ug/kg 390 U 400 U 420 U 380 U N-nitrosod/iphenylamine ug/kg 200 U 210 U 220 U 190 U N-nitrosod/iphenylamine ug/kg 200 U 210 U 220 U 190 U Phenatchlorophenol ug/kg 200 U 210 U 220 U 190 U Phenathrone ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichbrophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichbrophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichbrophenol ug/kg 50 U 50 U 50 U 50 U 1 TPH Semi-Volatile in Soil by GC/MS mg/kg 50 U 50 U 50 U 4 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 200 U 5,9 U 6,2 U Boromodichloromethane ug/kg 5,5 U 6,2 U 5,9 U <t< td=""><td>4-Nitroaniline</td><td>ug/kg</td><td>390 U</td><td>400 U</td><td>420 U</td><td>380 U</td></t<>	4-Nitroaniline	ug/kg	390 U	400 U	420 U	380 U
4-Nitrophenol ug/kg 390 U 400 U 420 U 300 U N-Introso-di-n-propylamine ug/kg 200 U 210 U 220 U 190 U N-Introso-di-n-propylamine ug/kg 200 U 210 U 220 U 190 U Pentachlorophenol ug/kg 390 U 400 U 420 U 380 U Phenol ug/kg 200 U 210 U 220 U 190 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Voiatile in Soil by GC/FID Extractable TPH mg/kg 50 U 50 U 50 U 50 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap VCC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 20 U 50 U 62 U 6	Nitrobenzene	ug/kg	200 U	210 U	220 U	190 U
N-nitroso-di-n-propylamine ug/kg 200 U 210 U 220 U 190 U N-nitrosodiphenylamine ug/kg 200 U 210 U 220 U 190 U Pentachlorophenol ug/kg 200 U 210 U 220 U 190 U Phenanthrene ug/kg 200 U 210 U 220 U 190 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 20 U 20 U 190 U 2,4,6-Trichlorophenol ug/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatile in Soil by GC/MS ug/kg 50 U 50 U 50 U 20 U Purgeable TPH ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 20 U Boromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U<	2-Nitrophenol	ug/kg	200 U	210 U	220 U	190 U
N-nitrosodiphenylamine ug/kg 200 U 210 U 220 U 190 U Petachlorophenol ug/kg 390 U 400 U 420 U 380 U Phenanthrene ug/kg 200 U 210 U 220 U 190 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Serni-Volatile in Soil by GC/FID Extractable TPH mg/kg 76.5 U 57.0 U 57.0 V 62.0 U 50 U 12 U Acetone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 12 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Disulifide	4-Nitrophenol	ug/kg	390 U	400 U	420 U	380 U
Pentachlorophenol ug/kg 390 U 400 U 420 U 380 U Phenanthrene ug/kg 200 U 210 U 220 U 190 U Phenol ug/kg 200 U 210 U 220 U 190 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 50 U 200 U 210 U 220 U 190 U 1 TPH Semi-Volatile in Soil by GC/MS mg/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatiles in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Actone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Beromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodofm ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Disuffide <td< td=""><td>N-nitroso-di-n-propylamine</td><td>ug/kg</td><td>200 U</td><td>210 U</td><td>220 U</td><td>190 U</td></td<>	N-nitroso-di-n-propylamine	ug/kg	200 U	210 U	220 U	190 U
Phenanthrene ug/kg 200 U 210 U 220 U 100 U Phenal ug/kg 200 U 210 U 220 U 190 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Volatile in Soil by GC/FID Extractable TPH mg/kg 50 U 50 U 50 U 50 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acctone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 10 Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 12 U Bromodorm ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 12 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	N-nitrosodiphenylamine	ug/kg	200 U	210 U	220 U	190 U
Phenol ug/kg 200 U 210 U 220 U 100 U Pyrene ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TH Semi-Volatille in Soil by GC/FID 76.6 U 79.5 U 87.1 U 76.7 U 1 TH Volatiles in Soil by GC/MS 50 U 50	Pentachlorophenol	ug/kg	390 U	400 U	420 U	380 U
Pyrene ug/kg 200 U 210 U 220 U 100 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Volatille in Soil by GC/FID Extractable TPH mg/kg 50 U 50 U 50 U 50 U 1 TPH Volatiles in Soil by GC/MS Purgeable TPH ug/kg 51 U 62 U 59 U 62 U Benzene ug/kg 5.5 U 62 U 5.9 U 62 U 9 U 62 U Bromodichloromethane ug/kg 5.5 U 62 U 5.9 U 62 U 12	Phenanthrene	ug/kg	200 U	210 U	220 U	190 U
2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 2,4,5-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Volatille in Soil by GC/FID Extractable TPH mg/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatiles in Soil by GC/MS ug/kg 50 U 50 U 50 U 50 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Beromodichormethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichormethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichormethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroberzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroberzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroberzene ug/kg 5.5 U 6.2 U 5.9 U <td>Phenol</td> <td>ug/kg</td> <td>200 U</td> <td>210 U</td> <td>220 U</td> <td>190 U</td>	Phenol	ug/kg	200 U	210 U	220 U	190 U
2,4,6-Trichlorophenol ug/kg 200 U 210 U 220 U 190 U 1 TPH Semi-Volatile in Soil by GC/FID mg/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatiles in Soil by GC/MS ug/kg 50 U 62 U 59 U 62 U 50 U 62 U 59 U 62 U 20 U	Pyrene	ug/kg	200 U	210 U	220 U	190 U
1 TPH Semi-Volatile in Soil by GC/FID Extractable TPH mg/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatiles in Soil by GC/MS ug/kg 50 U 50 U 50 U 50 U 50 U 1 TPH Volatiles in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 4 12 U 60 12 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroethane	2,4,5-Trichlorophenol	ug/kg	200 U	210 U	220 U	190 U
Extractable TPH mg/kg 76.6 U 79.5 U 87.1 U 76.7 U 1 TPH Volatiles in Soil by GC/MS ug/kg 50 U 62	2,4,6-Trichlorophenol	ug/kg	200 U	210 U	220 U	190 U
1 TPH Volatiles in Soil by GC/MS Purgeable TPH ug/kg 50 U 50 U 50 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromomethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg <td>1 TPH Semi-Volatile in Soil by GC/FID</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 TPH Semi-Volatile in Soil by GC/FID					
Purgeable TPH ug/kg 50 U 50 U 50 U 50 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 5.5 U 6.2 U 6.9 U 6.2 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 11 U 12 U 12 U 12 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U <td>Extractable TPH</td> <td>mg/kg</td> <td>76.6 U</td> <td>79.5 U</td> <td>87.1 U</td> <td>76.7 U</td>	Extractable TPH	mg/kg	76.6 U	79.5 U	87.1 U	76.7 U
1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 14 12 U 60 12 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Carbon Tetrachtoride ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U	1 TPH Volatiles in Soil by GC/MS					
Acetone ug/kg 14 12 U 60 12 U Benzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 12 U 12 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U	-			50 U	50 U	50 U
Benzene ug/kg S.5 U 6.2 U S.9 U 6.2 U Bromodichloromethane ug/kg S.5 U 6.2 U S.9 U 6.2 U Bromoform ug/kg S.5 U 6.2 U S.9 U 6.2 U Bromoform ug/kg S.5 U 6.2 U S.9 U 6.2 U Bromomethane ug/kg S.5 U 6.2 U S.9 U 6.2 U 2-Butanone ug/kg S.5 U 6.2 U 12 U 12 U Carbon Disulfide ug/kg S.5 U 6.2 U 5.9 U 6.2 U Carbon Disulfide ug/kg S.5 U 6.2 U S.9 U 6.2 U Chlorobenzene ug/kg S.5 U 6.2 U S.9 U 6.2 U Chloromethane ug/kg S.5 U 6.2 U S.9 U 6.2 U Cyclohexane ug/kg S.5 U 6.2 U S.9 U 6.2 U Cyclohexane ug/kg S.5 U 6.2 U S.9 U 6.2 U Dibromochloromethane ug/kg	1 VOC's in Soil at Low Levels by GC/MS Close	ed-System Purge	e-and-Trap			
Bromodichloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromomethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 10 6.2 U Carbon Disulfide ug/kg 5.5 U 6.2 U 10 6.2 U Carbon Tetrachloride ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromoethane ug/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Bromoform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Bromomethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 2-Butanone ug/kg 5.5 U 6.2 U 12 U 12 U 2-Butanone ug/kg 5.5 U 6.2 U 10 6.2 U Carbon Disulfide ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Cyclohexane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromoethane ug/kg		ug/kg				
Bromomethane ug/kg 5.5 U 6.2 U 5.8 U 6.2 U 2-Butanone ug/kg 11 U 12 U 12 U 12 U Carbon Disulfide ug/kg 5.5 U 6.2 U 10 6.2 U Carbon Tetrachtoride ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chlorobethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Cyclohexane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromo-3-Chloropropane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromochloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dichlorobenzene </td <td></td> <td>ug/kg</td> <td>5.5 U</td> <td>6.2 U</td> <td>5.9 U</td> <td>6.2 U</td>		ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
2-Butanoneug/kg11 U12 U12 U12 UCarbon Disulfideug/kg5.5 U6.2 U106.2 UCarbon Tetrachlorideug/kg5.5 U6.2 U5.9 U6.2 UChlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U <td< td=""><td></td><td>ug/kg</td><td>5.5 U</td><td>6.2 U</td><td>5.9 U</td><td>6.2 U</td></td<>		ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Carbon Disulfideug/kg5.5 U6.2 U106.2 UCarbon Tetrachlorideug/kg5.5 U6.2 U5.9 U6.2 UChlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 ULyz-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethene<			5.5 U	6.2 U	5.9 U	6.2 U
Carbon Tetrachlorideug/kg5.5 U6.2 U5.9 U6.2 UChlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroformug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5			11 U	12 U	12 U	
Chlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloroform ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Chloromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U Cyclohexane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromo-3-Chloropropane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromoethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dibromoethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dichlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,3-Dichlorobenzene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,4-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichlor		ug/kg	5.5 U		10	
Chloroethaneug/kg5.5 U6.2 U5.9 U6.2 UChloroformug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethene <td>Carbon Tetrachloride</td> <td>ug/kg</td> <td>5.5 U</td> <td>6.2 U</td> <td>5.9 U</td> <td>6.2 U</td>	Carbon Tetrachloride	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Chloroformug/kg5.5 U6.2 U5.9 U6.2 UChloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethene <td< td=""><td></td><td></td><td>5.5 U</td><td></td><td>5.9 U</td><td></td></td<>			5.5 U		5.9 U	
Chloromethaneug/kg5.5 U6.2 U5.9 U6.2 UCyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDlbromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U <tr <tr=""></tr>		ug/kg	5.5 U	6.2 U	5.9 U	
Cyclohexaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U<			5.5 U	6.2 U		
1,2-Dibromo-3-Chloropropaneug/kg5.5 U6.2 U5.9 U6.2 UDibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U1				6.2 U		
Dibromochloromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U	-		5.5 U		5.9 U	6.2 U
1,2-Dibromoethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U			5.5 U	6.2 U		
1,2-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UDichlorodifluoromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U		ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,3-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 U1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UDichlorodifluoromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Ucis-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U	-	ug/kg	5.5 U ·			6.2 U
1,4-Dichlorobenzeneug/kg5.5 U6.2 U5.9 U6.2 UDichlorodifluoromethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,1-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroethaneug/kg5.5 U6.2 U5.9 U6.2 U1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 Utrans-1,2-Dichloroetheneug/kg5.5 U6.2 U5.9 U6.2 U	1,2-Dichlorobenzene	ug/kg	5.5 U	6.2 U	5.9 U	
Dichlorodifluoromethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	1,3-Dichlorobenzene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U cis-1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U		ug/kg	5.5 U	6.2 U	5.9 V	6.2 U
1,2-Dichloroethane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U 1,1-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U cis-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U			5.5 U	6.2 U	5.9 U	
1,1-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U cis-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U		ug/kg	5.5 U	6.2 U	5.9 U	
cis-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	-	ug/kg	5.5 U		5.9 U	
trans-1,2-Dichloroethene ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	1,1-Dichloroethene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
	cis-1,2-Dichloroethene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,2-Dichloropropane ug/kg 5.5 U 6.2 U 5.9 U 6.2 U	trans-1,2-Dichloroethene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
	1,2-Dichloropropane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	5	6	7	8
cis-1,3-Dichloropropene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
trans-1,3-Dichloropropene	ug/kg	5.5 U	6.2 U	5. 9 U	6.2 U
Ethyl Benzene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
2-Hexanone	ug/kg	11 U	12 U	12 U	12 U
Isopropylbenzene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Methyl Acetate	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Methyl tert-butyl ether	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Methylcyclohexane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Methylene Chloride	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
4-Methyl-2-Pentanone	ug/kg	11 U	12 U	12 U	12 U
Styrene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,1,2,2-Tetrachloroethane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Tetrachloroethene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Toluene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,2,3-Trichlorobenzene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,2,4-Trichlorobenzene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,1,1-Trichloroethane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,1,2-Trichloroethane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Trichloroethene	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Trichlorofluoromethane	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
1,1,2-Trichlorotrifluoroethane	. ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
Vinyl Chloride	ug/kg	5.5 U	6.2 U	5.9 U	6.2 U
m and/or p-Xylene	ug/kg	5.5 U	6.2 U	15 J	6.2 U
o-Xylene	ug/kg	5.5 ป	6.2 ป	5. 9 ປ	6.2 U

RLAB Approved Sample Analysis Results

02/23/2007

.

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	9	10	11	12
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.118 U	0.134 U	0.121 U	0.136 U
1 Metals in Solids by ICP					
Aluminum	mg/kg	14500	20600	16100	11600
Antimony	mg/kg	7.44 UJ	8.04 UJ	7.53 UJ	7.72 UJ
Arsenic	mg/kg	5.74 J	14.7 J	4.90 J	7.03 J
Barium	mg/kg	124	149	202	93.6
Beryllium	mg/kg	0.623 J	1.06 J	0.754 J	0.644 UJ
Cadmium	mg/kg	0.620 U	0.670 U	0.627 U	0.644 U
Calcium	mg/kg	59300 J	5530 J	5180 J	2580 3
Chromium	mg/kg	19.6	35.6	17.4	30.2
Cobalt	mg/kg	7.60	7.01	8.07	6.46
Copper	mg/kg	15.0	1 6 .1	9.87	7.38
Iron	mg/kg	16300	29200	15100	18200
Lead	mg/kg	16.0 J	30.3 J	12 .9 J	9.59)
Magnesium	mg/kg	5280	3390	2050	1340
Manganese	mg/kg	352)	369 J	4 91 J	32 2 J
Nickel	mg/kg	22.7	25.6	14.3	14.3
Potassium	mg/kg	2990	1830	1790	1020
Selenium	mg/kg	4.34 UJ	4.69 UJ	4.39 UJ	4.50 UJ
Silver	mg/kg	1.24 U	1.34 U	1.25 U	1.29 U
Sodium	mg/kg	620 U	670 U	627 U	644 U
Thallium	mg/kg	3.10 U	3.35 U	3.14 U	3.22 U
Vanadium	mg/kg	26.3	61.1	33.5	49.4
Zinc	mg/kg	53.0	30.8	31.4	21.0
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1221	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1232	ug/kg	40 U	45 U	45 U	45 U ·
Aroclor 1242	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1248	ug/kg	40 UJ	45 UJ	45 UJ	45 UJ
Aroclor 1254	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1260	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1262	ug/kg	40 U	45 U	45 U	45 U
Aroclor 1268	ug/kg	40 U	45 U	45 U	45 U
1 Percent Solid					
Solids, percent	%	82.4	72.6	78.9	78.9
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.42 U	0.43 U	0.43 U	0.38 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene .	ug/kg	200 U	240 U	240 U	220 U
Acenaphthylene	ug/kg	200 U	240 U	240 U	2 20 U
Acetophenone	ug/kg	200 U	240 U	240 U	220 U
Anthracene	ug/kg	200 U	240 U	240 U	220 U
Atrazine	ug/kg	200 U	240 U	240 U	220 U
Benzaldehyde	ug/kg	200 U	240 U	240 U	220 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	9	10	11	12
Benzo(a)anthracene	ug/kg	200 U	240 U	240 UJ	220 U
Benzo(a)pyrene	ug/kg	200 U	240 U	240 UJ	220 U
Benzo(b)fluoranthene	ug/kg	200 U	240 U	240 UJ	220 U
Benzo(g,h,i)perylene	ug/kg	200 ປ	240 U	240 U	220 U
Benzo(k)fluoranthene	ug/kg	200 U	240 U	240 UJ	220 U
Biphenyl	. ug/kg	200 U	240 U	240 U	220 U
bis(2-Chloroethoxy)methane	ug/kg	200 U	240 U	240 U	220 U
bis(2-Chloroethyl)ether	ug/kg	200 U	240 U	240 U	220 U
bis(2-Chloroisopropyl)ether	ug/kg	200 U	240 U	240 U	220 U
bis(2-Ethylhexyl)phthalate	ug/kg	200 U	240 U	240 U	310
4-Bromophenyl-phenylether	ug/kg	200 U	240 U	240 U	220 U
Butyibenzyiphthalate	ug/kg	200 U	240 U	240 U	220 U
Caprolactam	ug/kg	200 U	240 U	240 U	220 U
Carbazole	ug/kg	200 U	240 U	240 U	220 U
4-Chloro-3-methylphenol	ug/kg	200 U	240 U	240 U	220 U
4-Chloroaniline	ug/kg	200 U	240 U	240 U	220 U
2-Chloronaphthalene	ug/kg	200 U	240 U	240 U	220 U
2-Chlorophenol	ug/kg	200 U	240 U	240 U	220 U
4-Chlorophenyl-phenylether	ug/kg	200 U	240 U	240 U	220 U
Chrysene	ug/kg	200 U	240 U	240 UJ	220 U
Di-n-butylphthalate	ug/kg	200 U	240 U	240 U	220 U
Di-n-octylphthalate	ug/kg	200 U	240 U	240 U	220 U
Dibenz(a,h)anthracene	ug/kg	200 U	240 U	240 UJ	220 U
Dibenzofuran	ug/kg	200 U	240 U	240 U	220 U
3,3'-Dichlorobenzidine	ug/kg	200 U	240 U	240 U	220 U
2,4-Dichlorophenol	ug/kg	200 U	240 U	240 U	220 U
Diethylphthalate	ug/kg	200 U	240 U	240 U	220 U
2,4-Dimethylphenol	ug/kg	200 U	240 U	240 U	220 U
Dimethylphthalate	ug/kg	200 U	240 U	240 U	220 U
4,6-Dinitro-2-methylphenol	ug/kg	380 U	470 U	470 U	430 U
2,4-Dinitrophenol	ug/kg	380 U	470 U	470 U	430 U
2,4-Dinitrotoluene	ug/kg	200 U	240 U	240 U	220 U
2,6-Dinitrotoluene	ug/kg	200 U	240 U	240 U	220 U
Fluoranthene	ug/kg	200 U	240 U	240 UJ	220 U
Fluorene	ug/kg	200 U	240 U	240 U	220 U
Hexachlorobenzene	ug/kg	200 U	240 U	240 U	220 U
Hexachlorobutadiene	ug/kg	200 U	240 U	240 U	220 U
Hexachlorocyclopentadiene	ug/kg	200 U	240 U	240 U	220 U
Hexachloroethane	ug/kg	200 U	240 U	240 U	220 U
Indeno(1,2,3-cd)pyrene	ug/kg	200 U	240 U	240 UJ	220 U
Isophorone	ug/kg	200 U	240 U	240 U	220 U
2-Methylnaphthalene	ug/kg	200 U	240 U	240 U	220 U
2-Methylphenol	ug/kg	200 U	240 U	240 U	220 U
4-Methylphenol	ug/kg	200 U	240 U	240 U	220 U
Naphthalene	ug/kg	200 U	240 U	240 U	220 U

RLAB Approved Sample Analysis Results

.....

02/23/2007

Project ID: PRFEXAMS5

. . . .

.

Analysis/ Analyte	Units	9	10	11	12
2-Nitroaniline					
3-Nitroaniline	ug/kg	380 U	470 U	470 U	430 U
4-Nitroaniline	ug/kg	380 U	470 U	470 U	430 U
Nitrobenzene	ug/kg	380 U	470 U	470 U	430 U
2-Nitrophenol	ug/kg	200 U	240 U	240 U	220 U
4-Nitrophenol	ug/kg	200 U	240 U	240 U	220 U
N-nitroso-di-n-propylamine	ug/kg	380 U	470 U	470 U	430 U
N-nitrosodiphenylamine	ug/kg	200 U	240 U	240 U	220 U
Pentachiorophenol	ug/kg	200 U	240 U	240 U	220 U
Phenanthrene	ug/kg ug/kg	380 U	470 U	470 U	430 U
Phenol		200 U	240 U	240 U	220 U
Pyrene	ug/kg ug/kg	200 U 200 U	240 U	240 U	220 U
2,4,5-Trichlorophenol	ug/kg ug/kg	200 U 200 U	240 U	240 UJ	220 U
2,4,6-Trichlorophenol	ug/kg	200 U	240 U 240 U	240 U 240 U	220 U
1 TPH Semi-Volatile in Soil by GC/FID	ug/kg	200 0	240 0	240 U	220 U
Extractable TPH	mg/kg	83.8 U	88.4 U	. 85.9 U	87.5 U
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	50 U	50 U	50 U	50 U
1 VOC's in Soil at Low Levels by GC/MS Clos	ed-System Purg	e-and-Trap			
Acetone	ug/kg	10 U	140	58	15
Benzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Bromodichloromethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Bromoform	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Bromomethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
2-Butanone	ug/kg	10 U	46	15 U	12 U
Carbon Disulfide	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Carbon Tetrachloride	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Chlorobenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U ·
Chloroethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Chloroform	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Chloromethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Cyclohexane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2-Dibromo-3-Chloropropane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Dibromochloromethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2-Dibromoethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2-Dichlorobenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,3-Dichlorobenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,4-Dichlorobenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Dichlorodifluoromethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,1-Dichloroethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2-Dichloroethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,1-Dichloroethene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
cis-1,2-Dichloroethene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
trans-1,2-Dichloroethene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2-Dichloropropane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	9	10	11	12
cis-1,3-Dichloropropene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
trans-1,3-Dichloropropene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Ethyl Benzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
2-Hexanone	ug/kg	10 U	12 U	15 U	12 U
Isopropylbenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Methyl Acetate	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Methyl tert-butyl ether	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Methylcyclohexane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Methylene Chloride	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
4-Methyl-2-Pentanone	ug/kg	10 U	12 U	15 U	12 U
Styrene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,1,2,2-Tetrachloroethane	ug/kg	5. 1 U	6.1 U	7.5 U	6.0 U
Tetrachloroethene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Toluene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,2,3-Trichlorobenzene	u g/k g	5.1 U	6.1 U	7.5 U	6.0 U
1,2,4-Trichlorobenzene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,1,1-Trichloroethane	ug/kg	5.1 U	6:1 U	7.5 U	6.0 U
1,1,2-Trichloroethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Trichloroethene	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Trichlorofluoromethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
1,1,2-Trichlorotrifluoroethane	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
Vinyl Chloride	ug/kg	5.1 U	6.1 U	7.5 U	6.0 U
m and/or p-Xylene	ug/kg	5.1 U	15	13	6.0 U
o-Xylene	ug/kg	5.1 U	6.1 U	' 7.5 U	6.0 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

..

Analysis/ Analyte	Units	13	14	15	16
1 Mercury in Soll or Sediment					
Mercury	mg/kg	0.129 U	0.128 U	0.131 U	0.132 U
1 Metals in Solids by ICP					
Aluminum	mg/kg	15200	17900	14300	18800
Antimony	mg/kg	7.81 UJ	6.95 UJ	7.40 UJ	7.44 UJ
Arsenic	mg/kg	4.56 J	7.51 J	7.56 J	2.39 J
Barium	mg/kg	169	174	229	161
Beryllium	mg/kg	0.710 J	0.783 J	0.805 J	0.729 J
Cadmium	mg/kg	0.651 U	0.579 U	0.617 U	0.620 U
Calcium	mg/kg	4150 J	40800 J	4770 J	4400 3
Chromium •	mg/kg	19.6	31.2	19.4	20.8
Cobalt	mg/kg	6.51 U	12.2	16.9	7.68
Copper	mg/kg	10.7	18.4	11.5	15.0
Iron	mg/kg	15600	21500	17900	16000
Lead	mg/kg	8.82 J	8.39 J	23.3 J	5.73 J
Magnesium	mg/kg	2340	7550	2140	4920
Manganese	mg/kg	103 J	591 J	841 J	506 J
Nickel	mg/kg	16.1	34.3	16.5	23.3
Potassium	mg/kg	1260	2450	1380	2140
Selenium	mg/kg	4.55 UJ	4.06 UJ	4.32 UJ	4.34 U)
Silver	mg/kg	1.30 U	1.16 U	1.23 U	1.24 U
Sodium	mg/kg	651 U	579	617 U	620 U
Thallium	mg/kg	3.25 U	2.90 U	3.08 U	3.10 U
Vanadium	mg/kg	29.6	32.0	48.9	20.0
Zinc	mg/kg	30.2	40.0	32.1	33.7
1 PCBs in Soil by GC/EC		·			
Aroclor 1016	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1221	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1232	ug/kg	42 U	45 U	41 U	. 43 U
Aroclor 1242	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1248	ug/kg	42 UJ	45 UJ	41 UJ	43 UJ
Aroclor 1254	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1260	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1262	ug/kg	42 U	45 U	41 U	43 U
Aroclor 1268	ug/kg	42 U	45 U	41 U	43 U
1 Percent Solid					
Solids, percent	%	77.7	79.2	83.5	89.6
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.42 U	0.4 U	0.39 U	0.38 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	220 U	270 U	210 U	210 U
Acenaphthylene	ug/kg	220 U	270 U	210 U	210 U
Acetophenone	ug/kg	. 220 U	270 U	210 U	2 10 U
Anthracene	ug/kg	220 U	270 U	210 U	210 U
Atrazine	ug/kg	220 U	270 U	210 U	210 U
Benzaldehyde	ug/kg	220 U	270 U	210 U	210 U

ASR Number: 3324 Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	13	14	15	16
Ramas (a) anther source	. 4				
Benzo(a)anthracene Benzo(a)pyrene	ug/kg	220 U	270 U	210 U	210 U
Benzo(b)fluoranthene	ug/kg	220 U	270 UJ	210 U	210 U
	ug/kg	220 U	270 UJ	210 U	210 U
Benzo(g,h,i)perylene	ug/kg	220 U	270 U	210 U	210 U
Benzo(k)fluoranthene	ug/kg	220 U	270 UJ	210 U	210 U
Biphenyl	ug/kg	220 U	270 U	210 U	210 U
bis(2-Chloroethoxy)methane	ug/kg	220 U	270 U	210 U	210 U
bis(2-Chloroethyl)ether	ug/kg	220 U	270 U	210 U	210 U
bis(2-Chloroisopropyl)ether	ug/kg	220 U	270 U	210 U	210 U
bis(2-Ethylhexyl)phthalate	ug/kg	230	270 U	290	210 U
4-Bromophenyl-phenylether	ug/kg	220 U	270 U	210 U	210 U
Butylbenzylphthalate	ug/kg 	220 U	270 U	210 U	210 U
Caprolactam	ug/kg	220 U	270 U	210 U	210 U
Carbazole	ug/kg 	220 U	270 U	210 U	210 U
4-Chloro-3-methylphenol	ug/kg	220 U	270 U	210 U	210 U
4-Chloroaniline	ug/kg	220 U	270 U	210 U	210 U
2-Chloronaphthalene	ug/kg	220 U	270 U	210 U	210 U
2-Chlorophenol	ug/kg	220 U	270 U	210 U	210 U
4-Chlorophenyl-phenylether	ug/kg	220 U	270 U	210 U	210 U
Chrysene Di a hubdabbalata	ug/kg	220 U	270 U	210 U	210 U
Di-n-butylphthalate	ug/kg	220 U	270 U	210 U	210 U
Di-n-octylphthalate	ug/kg	220 U	270 U	210 U	210 U
Dibenz(a,h)anthracene Dibenzofuran	ug/kg	220 U	270 UJ	210 U	210 U
3,3'-Dichlorobenzidine	ug/kg	220 U	270 U	210 U	210 U
2,4-Dichlorophenol	ug/kg	220 U	270 U	210 U	210 U
Diethylphthalate	ug/kg	220 U	270 U	210 U	210 U
2,4-Dimethylphenol	ug/kg	220 U	270 U	210 U	210 U
Dimethylphthalate	ug/kg	220 U	270 U	210 U	210 U
4,6-Dinitro-2-methylphenol	ug/kg	220 U	270 U	210 U	210 U
	ug/kg	420 U	530 U	400 U	410 U
2,4-Dinitrophenol	ug/kg	420 U	530 U	400 U	410 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/kg	220 U	270 U	210 U	210 U
Fluoranthene	ug/kg	220 U	270 U	210 U	210 U
	ug/kg	220 U	270 U	210 U	210 U
Fluorene	ug/kg	220 U	270 U	210 U	210 U
Hexachlorobenzene	ug/kg	220 U	270 U	210 U	210 U
Hexachlorobutadiene	ug/kg	220 U	270 U	210 U	210 U
Hexachlorocyclopentadiene	ug/kg	220 U	270 U	210 U	210 U
Hexachloroethane	ug/kg	220 U	270 U	210 U	210 U
Indeno(1,2,3-cd)pyrene	ug/kg	220 U	270 UJ	210 U	210 U
Isophorone	ug/kg	220 U	270 U	210 U	210 U
2-Methylnaphthalene	ug/kg	220 U	270 U	210 U	210 U
2-Methylphenol	ug/kg	220 U	270 U	210 U	210 U
4-Methylphenol	ug/kg	220 U	270 U	210 U	210 U
Naphthalene	ug/kg	220 U	270 U	210 U	210 U

ASR Number: 3324 Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	13	14	15	16
2-Nitroaniline	ug/kg	420 U	530 U	400 U	410 U
3-Nitroaniline	ug/kg	420 U	530 U	400 U	410 U
4-Nitroanlline	ug/kg	420 U	530 U	400 U	410 U
Nitrobenzene	ug/kg	220 U	270 U	210 U	210 U
2-Nitrophenol	ug/kg	220 U	270 U	210 U	210 U
4-Nitrophenol	ug/kg	420 U	530 U	400 U	410 U
N-nitroso-di-n-propylamine	ug/kg	220 U	270 U	210 U	210 U
N-nitrosodiphenylamine	ug/kg	220 U	270 U	210 U	210 U
Pentachlorophenol	ug/kg	420 U	530 U	400 U	410 U
Phenanthrene	ug/kg	220 U ⁻	270 U	210 U	210 U
Phenol	ug/kg	220 U	270 U	210 U	210 U
Pyrene	ug/kg	220 U	270 U	210 U	210 U
2,4,5-Trichlorophenol	·ug/kg	220 U	270 U	210 U	210 U
2,4,6-Trichlorophenol	ug/kg	220 U	270 U	210 U	210 U
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	mg/kg	85.6 U	82.9 U	82.3 U	85.4 U
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	50 U	50 U	50 U	50 U
1 VOC's in Soil at Low Levels by GC/MS Clo	sed-System Purg	e-and-Trap			
Acetone	ug/kg	32	14 U	30	100
Benzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Bromodichloromethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Bromoform	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Bromomethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
2-Butanone	ug/kg	14 U	14 U	13 U	15
Carbon Disulfide	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Carbon Tetrachloride	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Chlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Chloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Chloroform	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Chloromethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Cyclohexane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2-Dibromo-3-Chloropropane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Dibromochloromethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2-Dibromoethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2-Dichlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6,0 U
1,3-Dichlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,4-Dichlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Dichlorodifluoromethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1-Dichloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2-Dichloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1-Dichloroethene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
cis-1,2-Dichloroethene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
trans-1,2-Dichloroethene	ug/kg	7.2 U	7.2 U	6.7 U	~6.0 U
1,2-Dichloropropane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
	-				

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

Analysis/ Analyte	Units	13	14	15	16
cis-1,3-Dichloropropene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
trans-1,3-Dichloropropene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Ethyl Benzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
2-Hexanone	ug/kg	14 U	14 U	13 U	12 U
Isopropylbenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Methyl Acetate	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Methyl tert-butyl ether	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Methylcyclohexane	ug/kg	7.2 U	18 J	6.7 U	6.0 U
Methylene Chloride	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
4-Methyl-2-Pentanone	ug/kg	14 U	14 U	13 U	12 U
Styrene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1,2,2-Tetrachloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Tetrachloroethene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Toluene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2,3-Trichlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,2,4-Trichlorobenzene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1,1-Trichloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1,2-Trichloroethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Trichloroethene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
Trichlorofluoromethane	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
1,1,2-Trichlorotrifluoroethane	ug/kg	7.2 U	7.2 Ų	6.7 U	6.0 U
Vinyl Chloride	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
m and/or p-Xylene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U
o-Xylene	ug/kg	7.2 U	7.2 U	6.7 U	6.0 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Project Desc: Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis/ Analyte	Units	17	18	19	25-FB
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.115 U	0.126 U	0.130 U	
1 Metals in Solids by ICP					
Aluminum	mg/kg	16200	19400	16500	
Antimony	mg/kg	6.85 UJ	7.57 UJ	7.79 UJ	
Arsenic	mg/kg	1.14 UJ	22.1 J	6.87 J	
Barium	mg/kg	84.3	189	134	
Beryllium	mg/kg	0.763 J	0.820 J	0.718 U	
Cadmium	mg/kg	0.571 U	0.631 U	0.649 U	
Calcium	mg/kg	4370 J	162000 J	54900	
Chromium	mg/kg	21.5	28.4	20.7	
Cobalt	mg/kg	9.27	8.06	7.29	
Copper	mg/kg	15.2	9.22	14.6	
Iron	mg/kg	14200	21500	17200 J	
Lead	. mg/kg	5.17 3	16.8 J	12.7 J	
Magnesium	mg/kg	6580	6610	4810	
Manganese	mg/kg	135 J	322 J	349	
Nickel	mg/kg	30.1	40.8	22.5	
Potassium	mg/kg	2300	2260	3560	
Selenium	mg/kg	4.00 UJ	4.41 UJ	4.55 UJ	
Silver	mg/kg	1.14 U	1.26 U	1.30 U	
Sodium	mg/kg	571 U	631 U	649 U	
Thallium	mg/kg	2.86 U	3.15 U	3.25 U	
Vanadium	mg/kg	13.0	28.3	30.4 J	
Zinc	mg/kg	36.9	29.4	40.7	
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	37 U	39 U	45 U	
Aroclor 1221	ug/kg	37 U	39 U	45 U	
Aroclor 1232	ug/kg	37 U	39 U	45 U	
Aroclor 1242	ug/kg	37 U	39 U	45 U	
Aroclor 1248	ug/kg	37 UJ	39 UJ	45 U	
Aroclor 1254	ug/kg	37 U	39 U	· 45 U	
Aroclor 1260	ug/kg	37 U	39 U	45 U	
Aroclor 1262	ug/kg	37 U	39 U	45 U	
Aroclor 1268	ug/kg	37 U	39 U	45 U	
1 Percent Solid					
Solids, percent	%	80.4	83.5	77.1	96.5
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.35 U	0.35 U	0.49 U	
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	230 U	240 U	250 U	
Acenaphthylene	ug/kg	230 U	240 U	250 U	
Acetophenone	ug/kg	230 U	240 U	250 U	
Anthracene	ug/kg	230 U	240 U	250 U	
Atrazine	ug/kg	230 U	240 U	250 U	
Benzaldehyde	ug/kg	230 U	240 U	250 U	

Page 28 of 44

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	17	18	19	25-FB
Benzo(a)anthracene	ug/kg	230 U	240 U	250 U	
Benzo(a)pyrene	ug/kg	230 U	240 U	250 U	
Benzo(b)fluoranthene	ug/kg	230 U	240 U	250 U	
Benzo(g,h,i)perylene	ug/kg	230 U	240 U	250 U	
Benzo(k)fluoranthene	ug/kg	230 U	240 U	250 U	
Biphenyl	ug/kg	230 U	240 U	250 U	
bis(2-Chloroethoxy)methane	ug/kg	230 U	240 U	250 U	
bis(2-Chloroethyl)ether	ug/kg	230 U	240 U	250 U	
bis(2-Chloroisopropyl)ether	ug/kg	230 U	240 U	250 U	
bis(2-Ethylhexyl)phthalate	ug/kg	230 U	240 U	250 U	
4-Bromophenyl-phenylether	ug/kg	230 U	240 U	250 U	
Butylbenzylphthalate	ug/kg	230 U	240 U	250 U	
Caprolactam	ug/kg	2 30 U	240 U	250 U	
Carbazole	ug/kg	230 U	240 U	250 U	
4-Chloro-3-methylphenol	ug/kg	230 U	240 U	250 U	
4-Chloroaniline	ug/kg	230 U	240 U	250 U	
2-Chloronaphthalene	ug/kg	230 U	240 U	250 U	
2-Chlorophenol	ug/kg	230 U	240 U	250 U	
4-Chlorophenyl-phenylether	ug/kg	230 U	240 U	250 U	
Chrysene	ug/kg	230 U	240 U	250 U	
Di-n-butylphthalate	ug/kg	230 U	240 U	250 U	
Di-n-octylphthalate	ug/kg	230 U	240 U	250 U	
Dibenz(a,h)anthracene	ug/kg	230 U	240 U	250 U	
Dibenzofuran	ug/kg	230 U	240 U	250 U	
3,3'-Dichlorobenzidine	ug/kg	230 U	240 U	250 U	
2,4-Dichlorophenol	ug/kg	230 U	240 U	250 U	
Diethylphthalate	ug/kg	230 U	240 U	250 U	
2,4-Dimethylphenol	ug/kg	230 U	240 U	250 U	
Dimethylphthalate	ug/kg	230 U	240 U	250 U	
4,6-Dinitro-2-methylphenol	ug/kg	440 U	460 U	490 U	
2,4-Dinitrophenol	ug/kg	440 U	460 U	490 U	
2,4-Dinitrotoluene	ug/kg	230 U	240 U	250 U	
2,6-Dinitrotoluene	ug/kg	230 U	240 U	250 U	
Fluoranthene	ug/kg	230 U	240 U	250 U	
Fluorene	ug/kg	230 U	240 U	250 U	
Hexachlorobenzene	ug/kg	230 U	240 U	250 U	
Hexachlorobutadiene	ug/kg	230 U	240 U	250 U	
Hexachlorocyclopentadiene	ug/kg	230 U	240 U	250 U	
Hexachloroethane	ug/kg	230 U	240 U	250 U	
Indeno(1,2,3-cd)pyrene	ug/kg	230 U	240 U	250 U	
Isophorone	ug/kg	230 U	240 U	250 U	
2-Methylnaphthalene	ug/kg	230 U	240 U	250 U	
2-Methylphenol	ug/kg	230 U	240 U	250 U	
4-Methylphenol	ug/kg	230 U	240 U	250 U	
Naphthalene	ug/kg	230 U	240 U	250 U	

ASR Number: 3324 Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

.

02/23/2007

Analysis/ Analyte	Units	17	18	19	25-FB
2-Nitroaniline	ug/kg	440 U	460 U	490 U	
3-Nitroaniline	ug/kg	440 U	460 U	490 U	
4-Nitroaniline	ug/kg	440 U	460 U	490 U	
Nitrobenzene	ug/kg	230 U	240 U	250 U	
2-Nitrophenol	ug/kg	230 U	240 U	250 U	
4-Nitrophenol	ug/kg	440 U	460 U	490 U	
N-nitroso-di-n-propylamine	ug/kg	230 U	240 U	250 U	
N-nitrosodiphenylamine	ug/kg	230 U	240 U	250 U	
Pentachlorophenol	ug/kg	440 U	460 U	490 U	
Phenanthrene	ug/kg	230 U	240 U	250 U	
Phenol	ug/kg	230 U	240 U	250 U	
Pyrene	ug/kg	230 U	240 U	250 U	
2,4,5-Trichlorophenol	ug/kg	230 U	240 U	250 U	
2,4,6-Trichlorophenol	ug/kg	230 U	240 U	250 U	
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	mg/kg	79.2 U	86.5 U	87.6 U	
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	50 U	50 U	50 U	88
1 VOC's in Soil at Low Levels by GC/MS Close	ed-System Purg	e-and-Trap			
Acetone	ug/kg	170	14 U	66	11
Benzene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Bromodichioromethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Bromoform	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
Bromomethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
2-Butanone	ug/kg	29	14 U	29 U .	10 U
Carbon Disulfide	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Carbon Tetrachloride	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Chlorobenzene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Chloroethane	ug/kg	7.2 U	7.0 U	15 U	5.0U
Chloroform	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Chloromethane	ug/kg	7.2 U	7.0 U _	15 U	5.0 U
Cyclohexane	ug/kg	7.2 U	7.0 U	15 U	5.0 U.
1,2-Dibromo-3-Chloropropane	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
Dibromochloromethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,2-Dibromoethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,2-Dichlorobenzene	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
1,3-Dichlorobenzene	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
1,4-Dichlorobenzene	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
Dichlorodifluoromethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,1-Dichloroethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,2-Dichloroethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,1-Dichloroethene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
cis-1,2-Dichloroethene	ug/kg	7,2 U	7.0 U	15 U	5.0 U
trans-1,2-Dichloroethene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,2-Dichloropropane	ug/kg	7.2 U	7.0 U	15 U	5.0 U

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	17	18	19	25-FB
cis-1,3-Dichloropropene		7.2 U	7.0.11	15.11	
trans-1,3-Dichloropropene	ug/kg	-	7.0 U	15 U	5.0 U
Ethyl Benzene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
2-Hexanone	ug/kg	7.2 U	7.0 U	15 U	5.0 U
	ug/kg	14 U	14 U	29 U	10 U
Isopropylbenzene	ug/kg	7.2 U	7.0 U	15 U	5. 0 V
Methyl Acetate	· ug/kg	7.2 U	7.0 U	15 U	5.0 U
Methyl tert-butyl ether	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Methylcyclohexane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Methylene Chloride	ug/kg	7.2 U	7.0 U	15 U	5.0 U
4-Methyl-2-Pentanone	ug/kg	14 U	14 U	29 U	10 U
Styrene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,1,2,2-Tetrachloroethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Tetrachloroethene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Toluene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,2,3-Trichlorobenzene	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
1,2,4-Trichlorobenzene	ug/kg	7.2 U	7.0 U	N/A R	5.0 U
1,1,1-Trichloroethane	uġ/kg	7.2 U	7.0 U	15 U	5.0 U
1,1,2-Trichloroethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Trichloroethene	ug/kg	7.2 U	7.0 U	15 U	5.0 ប
Trichlorofluoromethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
1,1,2-Trichlorotrifluoroethane	ug/kg	7.2 U	7.0 U	15 U	5.0 U
Vinyl Chloride	ug/kg	7.2 U	7.0 U	15 U	5.0 U
m and/or p-Xylene	ug/kg	7.2 U	7.0 U	15 U	5.0 U
o-Xylene	ug/kg	7.2 U	7.0 U	15 U	5.0 U

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	26	27	28	29
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.143 U	0.152 U	0.416	0.220 U
1 Metals in Solids by ICP					
Aluminum	mg/kg	22500	24100	15600	17400
Antimony	mg/kg	8.77 UJ	9.41 UJ	7.22 UJ	13.2 UJ
Arsenic	mg/kg	4.72 J	6.43 J	4.73 J	8.71)
Barium	mg/kg	236	195	186	238
Beryllium	mg/kg	0.964 U	1.11	0.673 U	1.10 U
Cadmium	mg/kg	0.731 U	0.784 U	1.80	1.10 U
Calcium	mg/kg	46900	11100	42600	19400
Chromium	mg/kg	22.8	23.5	20.7	23.1
Cobalt	mg/kg	10.5	11.2	6.93	17.7
Copper	mg/kg	17.5	18.8	65.3	15.0
Iron	mg/kg	17900 J	21500 J	16600 J	20700 J
Lead	mg/kg	17.7 J	24.6 J	71.3 J	24.5 J
Magnesium	mg/kg	4250	4150	3170	4360
Manganese	mg/kg	296	390	451	1040
Nickel	mg/kg	23.3	21.0	16.0	25.8
Potassium	mg/kg	2880	3260	2120	3470
Selenium	mg/kg	5.12 UJ	5.49 UJ	4.21 U3	7.69 UJ
Silver	mg/kg	1.46 U	1.57 U	1. 20 U	2.20 U
Sođium	mg/kg	731 U	784 U	602 U	1100 U
Thallium	mg/kg	3.66 U	3.92 U	3.01 U	5.49 U
Vanadium	mg/kg	40.9 J	45.3 J	29.6 J	44.8 J
Zinc	mg/kg	58.8	57.2	646	47.1
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1221	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1232	ug/kg	43 U	48 U	50 U	54 U -
Aroclor 1242	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1248	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1254	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1260	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1262	ug/kg	43 U	48 U	50 U	54 U
Aroclor 1268	ug/kg	43 U	48 U	50 U	54 U
1 Percent Solid					
Solids, percent	%	72.5	71.0	73.3	24.0
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.49 U	0.49 U	0.5 U	0.53 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	250 U	250 U	240 U	260 U
Acenaphthylene	ug/kg	250 ป	250 U	240 U	260 U
Acetophenone	ug/kg	250 U	250 U	240 U	260 U
Anthracene	ug/kg	250 U	250 U	240 U	260 U
Atrazine	ug/kg	250 U	250 U	240 U	260 U
Benzaldehyde	ug/kg	250 U	250 U	240 U	260 U

Project ID: PRFEXAMS5 Proje

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	26	27	28	29
Benzo(a)anthracene	ug/kg	250 U	250 U	240 U	260 U
Benzo(a)pyrene	ug/kg	250 U	250 U	240 U	260 U
Benzo(b)fluoranthene	ug/kg	250 U	250 U	240 U	260 U
Benzo(g,h,i)perylene	ug/kg	250 U	250 U	240 U	260 U
Benzo(k)fluoranthene	ug/kg	250 U	250 U	240 U	260 U
Biphenyl	ug/kg	250 U	250 U	240 U	260 U
bis(2-Chloroethoxy)methane	ug/kg	250 U	250 U	240 U	260 U
bis(2-Chloroethyl)ether	ug/kg	250 U	250 U	240 U	260 U
bis(2-Chloroisopropyl)ether	ug/kg	250 U	250 U	240 U	260 U
bis(2-Ethylhexyl)phthalate	ug/kg	250 U	250 U	240 U	260 U
4-Bromophenyl-phenylether	ug/kg	250 U	250 U	240 U	260 U
Butylbenzylphthalate	ug/kg	250 U	250 U	240 U	260 U
Caprolactam	ug/kg	250 U	250 U	240 U	260 U
Carbazole	ug/kg	250 U	250 U	240 U	260 U
4-Chloro-3-methylphenol	ug/kg	250 U	250 U	240 U	260 U
4-Chloroaniline	ug/kg	250 U	250 U	240 U	260 U
2-Chloronaphthalene	ug/kg	250 U	250 U	240 U	260 U
2-Chlorophenol	ug/kg	250 ⊍	250 U	240 U	260 U
4-Chlorophenyl-phenylether	ug/kg	250 U	250 U	240 U	260 U
Chrysene	ug/kg	250 U	250 U	240 U	260 U
Di-n-butylphthalate	ug/kg	250 U	250 U	240 U	260 U
Di-n-octylphthalate	ug/kg	250 U	250 U	240 U	260 U
Dibenz(a,h)anthracene	ug/kg	250 U	250 U	240 U	260 U
Dibenzofuran	ug/kg	250 U	250 U	240 U	260 U
3,3'-Dichlorobenzidine	ug/kg	250 U	250 U	240 U	260 U
2,4-Dichlorophenol	ug/kg	250 U	250 U	240 U	260 U
Diethylphthalate	ug/kg	250 U	250 U	240 U	260 U
2,4-Dimethylphenol	ug/kg	250 U	250 U	240 U	260 U ·
Dimethylphthalate	ug/kg	250 U	250 U	240 U	260 U
4,6-Dinitro-2-methylphenol	ug/kg	490 U	490 U	460 U	500 U
2,4-Dinitrophenol	ug/kg	490 U	490 U	460 U	500 U
2,4-Dinitrotoluene	ug/kg	250 U	250 U	240 U	260 U
2,6-Dinitrotoluene	ug/kg	250 U	250 U	240 U	260 U
Fluoranthene	ug/kg	250 U	250 U	240 U	260 U
Fluorene	ug/kg	250 U	250 U	240 U	260 U
Hexachlorobenzene	ug/kg	250 U	250 U	240 U	260 U
Hexachlorobutadiene	ug/kg	250 U	250 U	240 U	260 U
Hexachlorocyclopentadiene	ug/kg	250 U	250 U	240 U	260 U
Hexachloroethane	ug/kg	250 U	250 U	240 U	260 U
Indeno(1,2,3-cd)pyrene	ug/kg	250 U	250 U	240 U	260 U
Isophorone	ug/kg	250 U	250 U	240 U	260 U
2-Methylnaphthalene	ug/kg	250 U	250 U	240 U	260 U
2-Methylphenol	ug/kg	250 U	250 U	240 U	260 U
4-Methylphenol	ug/kg	250 U	250 U	240 U	260 U
Naphthalene	ug/kg	250 U	250 U	240 U	260 U

ASR Number: 3324 Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

· · · · · ·

Analysis/ Analyte	Units	26	27	28	29
2-Nitroaniline	ug/kg	490 U	490 U	460 U	500 U
3-Nitroaniline	ug/kg	490 U	490 U	460 U	· 500 U
4-Nitroaniline	ug/kg	490 U	490 U	460 U	500 U
Nitrobenzene	ug/kg	250 U	250 U	240 U	260 U
2-Nitrophenol	ug/kg	250 U	250 U	240 U	260 U
4-Nitrophenol	ug/kg	490 U	490 U	460 U	500 U
N-nitroso-di-n-propylamine	ug/kg	250 U	250 U	240 U	260 U
N-nitrosodiphenylamine	ug/kg	250 U	250 U	240 U	260 U
Pentachlorophenol	ug/kg	490 U	490 U	460 U	500 U
Phenanthrene	ug/kg	250 U	250 U	240 U	260 U
Phenol	ug/kg	250 U	250 U	240 U	260 U
Pyrene	ug/kg	250 U	250 U	240 U	260 U
2,4,5-Trichlorophenol	ug/kg	250 U	250 U	240 U	260 U
2,4,6-Trichlorophenol	ug/kg	250 U	250 U	240 U	260 U
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	mg/kg	97.4 U	98.5 U	306	99.9 U
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	50 U	50 U	50 U	104 U
1 VOC's in Soil at Low Levels by GC/MS Clos	ed-System Purg	e-and-Trap			
Acetone	ug/kg	14 U	15 U	26	15 U
Benzene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Bromodichloromethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Bromoform	ug/kg	N/A R	7.3 U	N/A R	N/A R
Bromomethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
2-Butanone	ug/kg	14 U	15 U	13 U	7.5 U
Carbon Disulfide	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Carbon Tetrachloride	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Chlorobenzene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Chloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Chloroform	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Chloromethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Cyclohexane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2-Dibromo-3-Chloropropane	ug/kg	N/A R	7.3 U	N/A R	N/A R
Dibromochloromethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2-Dibromoethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2-Dichlorobenzene	ug/kg	N/A R	7.3 U	N/A R	N/A R
1,3-Dichlorobenzene	ug/kg	N/A R	7.3 U	N/A R	N/A R
1,4-Dichlorobenzene	ug/kg	N/A R	7.3 U	N/A R	N/A R
Dichlorodifluoromethane	ug/kg	7.2 Ų	7.3 U	6.4 U	7.5 U
1,1-Dichloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2-Dichloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,1-Dichloroethene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
cis-1,2-Dichloroethene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
trans-1,2-Dichloroethene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2-Dichloropropane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

Analysis/ Analyte	Units	26	27	28	29
cis-1,3-Dichloropropene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
trans-1,3-Dichloropropene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Èthyl Benzene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
2-Hexanone	ug/kg	14 U	15 U	13 U	15 U
Isopropyibenzene	ug/kg	7.2 U	7.3 U	6.4 U	.7.5 U
Methyl Acetate	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Methyl tert-butyl ether	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Methylcyclohexane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Methylene Chloride	ug/kg	7.2 U	7.3 U	6.6	7.5 U
4-Methyl-2-Pentanone	ug/kg	14 U	15 U	13 U	15 U
Styrene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,1,2,2-Tetrachloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Tetrachloroethene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Toluene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,2,3-Trichlorobenzene	ug/kg	N/A R	7.3 U	N/A R	N/A R
1,2,4-Trichlorobenzene	ug/kg	N/A R	7.3 U	N/A R	N/A R
1,1,1-Trichloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,1,2-Trichloroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Trichloroethene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Trichlorofluoromethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
1,1,2-Trichlorotrifluoroethane	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
Vinyl Chloride	ug/kg	7.2 U	7.3 U	6.4 U	7.5 U
m and/or p-Xylene	ug/kg	19 J	7.3 U	6.4 U	7.5 U
o-Xylene	ug/kg	7.2 U	7.3 U	6.4 U	7.5 V

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	101	110-FB	201	202
1 Mercury - Dissolved, in Water					
Mercury	ug/L	0.200 U			
1 Mercury in Water					
Mercury	ug/L	0.200 U	0.200 U	0.200 U	0.200 U
1 Metals - Dissolved, in Water by ICP/MS					
Antimony	ug/L	2.00 U			
Arsenic	ug/L	1.00 U			
Barium	ug/L	187 J			
Beryllium	ug/L	1.00 U			
Cadmium	ug/L	1.00 U			
Chromium Cobalt	ug/L	2.00 U			
Copper	ug/L	5.49			
Lead	ug/L ug/L	2.45 U 14.1			
Manganese	ug/L	14.1 J			
Nickel -	ug/L	25.9			
Selenium	ug/L	5.00 U			
Silver	ug/L	1.00 U			
Thallium	ug/L	1.00 UJ			
Vanadium	ug/L	1,00 U			
Zinc	ug/L	2.66 UJ			
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.00 U	2.00 U	2.00 U	12.7
Arsenic	ug/L	1.00 U	1.00 U	1.00 U	5.32
Barium	ug/L	57. 9	10.0 U	104	10.0 U
Beryllium	ug/L	1.00 U	1.00 U	1.00 U	2.88
Cadmium	ug/L	1.00 U	1.00 U	1.00 U	3.18
Chromium	ug/L	2.00 U	2.00 U	2.00 U	6.33
Cobalt	ug/L	1.00 U	1.00 U	1.00 U	3.23
Copper	ug/L	3.71 U	2.00 U	4.77 U	28.8
Lead	ug/L	3.63 U	1.00 U	1.00 U	7.96
Manganese . Nickel	ug/L	14.6	1.00 U	9.78	7.58
Selenium	ug/L	1.51	1.00 U	1.30	3.73
Silver	ug/L	5.00 U	5.00 U	5.00 U 1.00 U	15.2 3.12
Thallium	ug/L ug/L	1.00 U 1.00 U	1.00 U 1.00 UJ	1.00 UJ	3.21
Vanadium	ug/L	1.00 U	1.00 U	1.00 05	4.72
Zinc	ug/L	199 J	2.00 UJ	21.1 J	16.8 J
1 PAH's in Water by GC/MS-SIM	0g/ E	1999	2.00 05	22.2.5	10.0 5
Acenaphthene	ug/L			0.054 U	0.054 U
Acenaphthylene	ug/L			0.06 U	0.06 U
Anthracene	ug/L		-	0.063 U	0.063 U
Benzo(a)anthracene	ug/L	-		0.048 U	0.048 U
Benzo(a)pyrene	ug/L			0.057 U	0.057 U
Benzo(b)fluoranthene	ug/L			0.06 U	0.06 U
Benzo(g,h,i)perylene	ug/L			0.063 U	0.063 U
	J				

Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

.

Analysis/ Analyte	Units	101	110-FB	201	202
Benzo(k)fluoranthene	ug/L			0.06 U	0.06 U
Chrysene	ug/L			0.059 U	0.059 U
Dibenz(a,h)anthracene	ug/L			0.051 U	0.051 U
Fluoranthene	ug/L			0.061 U	0.061 U
Fluorene	ug/L			0.05 U	0.05 U
Indeno(1,2,3-cd)pyrene	ug/L			0.057 U	0.057 U
1-Methylnaphthalene	ug/L			0.059 U	0. 0 59 V
2-Methylnaphthalene	ug/L			0.061 U	0.061 U
Naphthalene	ug/L			0.065 U	0.065 U
Phenanthrene	ug/L			0.059 U	0.059 U
Pyrene	ug/L			0.05 U	0.05 U
1 Perchlorate in Water by IC					
Perchlorate	ug/L	4 U	4 U	4 U	4 U
1 Pesticides in Water by GC/EC					
Aroclor 1016	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1221	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1232	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1242	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1248	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1254	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1260	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1262	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1268	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1 Semi-Volatile Organic Compounds in Water					
Acenaphthene	ug/L	5.0 U	5.0 U		
Acenaphthylene	ug/L	5.0 U	5.0 U		
Acetophenone	ug/L "	5.0 U	5.0 U		
Anthracene	ug/L	5.0 U	5.0 U		
Atrazine	ug/L	5.0 U	5.0 U		
Benzaldehyde	ug/L	5.0 U	5.0 U		
Benzo(a)anthracene	ug/L	5.0 U	5.0 U		
Benzo(a)pyrene Benzo(b)fluoranthene	ug/L	5.0 U	5.0 U		
	ug/L	5.0 U	5.0 U		
Benzo(g,h,i)perylene	ug/L	5.0 U	5.0 U		
Benzo(k)fluoranthene	ug/L	5.0 U 5.0 U	5.0 U		
Biphenyl	ug/L		5.0 U		
bis(2-Chloroethoxy)methane	ug/L	5.0 U	5.0 U		
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	ug/L	5.0 U	. 5.0 U		
	ug/L	5.0 U	5.0 U		
bis(2-Ethylhexyl)phthalate	ug/L	5.0 U	5.0 U		
4-Bromophenyl-phenylether	ug/L	5.0 U	5.0 U		
Butylbenzylphthalate	ug/L	5.0 U	5.0 U		
Caprolactam	ug/L	5.0 U	5.0 U		
Carbazole	ug/L	5.0 U	5.0 U		
4-Chloro-3-methylphenol	ug/L	5.0 U	5.0 U		

RLAB Approved Sample Analysis Results

02/23/2007

1 ÷

20122-00

Project ID: PRFEXAMS5

Project Desc: Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis/ Analyte	Units	101	110-FB	201	202
4-Chloroaniline	ug/L	5.0 U	5.0 U		
2-Chloronaphthalene	ug/L	5.0 U	5.0 U		
2-Chlorophenal	ug/L	5.0 U	5.0 U		
4-Chlorophenyl-phenylether	ug/L	5.0 U	5.0 U		
Chrysene	ug/L	5.0 U	5.0 U		
Di-n-butylphthalate	ug/L	5.0 U	5.0 U		
Di-n-octylphthalate	ug/L	5.0 U	5.0 U		
Dibenz(a,h)anthracene	ug/L	5.0 U	5.0 U		
Dibenzofuran	ug/L	5.0 U	5.0 U		
3,3'-Dichlorobenzidine	ug/L	5.0 U	່ 5.0 ປ		
2,4-Dichlorophenol	ug/L	5.0 U	5.0 U		
Diethylphthalate	ug/L	5.0 U	5.0 U		
2,4-Dimethylphenol	ug/L	5.0 U	5.0 U		
Dimethylphthalate	ug/L	5.0 U	5.0 U		
4,6-Dinitro-2-methylphenol	ug/L	10 U	10 U		
2,4-Dinitrophenol	ug/L	10 U	10 Ų		
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U		
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U		
Fluoranthene	ug/L	5.0 U	5.0 U		
Fluorene	ug/L	5.0 U	5.0 U		
Hexachlorobenzene	ug/L	5.0 U	5.0 U		
Hexachlorobutadiene	ug/L	5.0 U	5.0 U		
Hexachlorocyclopentadiene	ug/L	5.0 U	5.0 U		
Hexachloroethane	ug/L	5.0 U	5.0 U		
Indeno(1,2,3-cd)pyrene	ug/L	5.0 U	5.0 U		
Isophorone	ug/L	5.0 U	5.0 U		
2-Methylnaphthalene	ug/L	5.0 U	5.0 U		
2-Methylphenol	ug/L	5.0 U	5.0 U		•
4-Methylphenol	ug/L	5.0 U	5.0 U		
Naphthalene	ug/L	5.0 U	5.0 U		
2-Nitroaniline	ug/L	10 U	10 U		
3-Nitroaniline	ug/L	· 10 U	10 U		
4-Nitroaniline	ug/L	10 U	10 U		
Nitrobenzene	ug/L	5.0 U	5.0 U		
2-Nitrophenol	ug/L	5.0 U	5.0 U		
4-Nitrophenol	ug/L	10 U	10 U		
N-nitroso-di-n-propylamine	ug/L	5.0 U	5.0 U		
N-nitrosodiphenylamine	ug/L	5.0 U	5.0 U		
Pentachlorophenol	ug/L	10 U	10 U		
Phenanthrene	ug/L	5.0 U	5.0 U		
Phenol	ug/L	5.0 U	5.0 U		
Pyrene	ug/L	5.0 U	5.0 U		
2,3,4,6-Tetrachlorophenol	ug/L	5.0 U	5.0 U		
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U		
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U		
			•		

.

RLAB Approved Sample Analysis Results

02/23/2007

.

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	101	110-FB	201	202
2 Semi-Volatile Organic Compounds in Water					
Acetophenone	ug/L			5.0 U	5.0 U
Atrazine	ug/L			5.0 U	5.0 U
Benzaldehyde	ug/L			5.0 U	5.0 U
Biphenyl	ug/L			5.0 U	5.0 U
bis(2-Chloroethoxy)methane	ug/L			5.0 U	5.0 U
bis(2-Chloroethyi)ether	ug/L			5.0 U	5.0 U
bis(2-Chloroisopropyl)ether	ug/L			5.0 U	5.0 U
bis(2-Ethylhexyl)phthalate	ug/L			5.0 U	5.0 U
4-Bromophenyl-phenylether	ug/L			5.0 U	5.0 U
Butylbenzylphthalate	ug/L			5.0 U	5.0 U
Caprolactam	ug/L			5.0 U	5.0 U
Carbazole	ug/L			5.0 U	5.0 U
4-Chloro-3-methylphenol	ug/L			5.0 U	5.0 U
4-Chloroaniline	ug/L			5.0 U	5.0 U
2-Chlorophenol	ug/L			5.0 U	5.0 U
4-Chlorophenyl-phenylether	ug/L			5.0 U	5.0 U
Di-n-butylphthalate	ug/L			5.0 U	5.0 U
Di-n-octylphthalate	ug/L			5.0 U	5.0 U
Dibenzofuran	ug/L			5.0 U	5.0 U
3,3'-Dichlorobenzidine	ug/L			5.0 U	5.0 U
2,4-Dichlorophenol	ug/L			5.0 U	5.0 U
Diethylphthalate	ug/L			5.0 U	5.0 U
2,4-Dimethylphenol	ug/L			5.0 U	5.0 U
Dimethylphthalate	ug/L			5.0 U	5.0 U
4,6-Dinitro-2-methylphenol	ug/L			10 U	10 U
2,4-Dinitrophenol	ug/L			10 U	10 U
2,4-Dinitrotoluene	ug/L		·	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L			5.0 U	5.0 U
Hexachlorobenzene	ug/L			5.0 U	5.0 U
Hexachlorobutadiene	ug/L			5.0 U	5.0 U
Hexachlorocyclopentadiene	ug/L			5.0 U	5.0 U
Hexachloroethane	ug/L			5.0 U	5.0 U
Isophorone	ug/L			5.0 U	5.0 U
2-Methylphenol	ug/L			5.0 U	5.0 U
4-Methylphenol	ug/L			5.0 U	5.0 U
2-Nitroaniline	ug/L			10 U	10 U
3-Nitroaniline	ug/L			10 U	10 U
4-Nitroaniline	ug/L			10 U	10 U
Nitrobenzene	ug/L			5.0 U	5.0 U
2-Nitrophenol	ug/L			5.0 U	5.0 U
4-Nitropheno!	ug/L			10 U	10 U
N-nitroso-di-n-propylamine	ug/L			5.0 U	5.0 U
N-nitrosodiphenylamine	ug/L			5.0 U	5.0 U
Pentachlorophenol	ug/L			10 U	10 U
Phenol	ug/L			5.0 U	5.0 U

Page 39 of 44

1.1

RLAB Approved Sample Analysis Results

02/23/2007

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	101	110-FB	201	202
2,3,4,6-Tetrachlorophenol	ug/L			5.0 U	5.0 U
2,4,5-Trichlorophenol	ug/L			5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L			5.0 U	5.0 U
1 TPH Semi-volatile in Water by GC/FID Extractable TPH	-	2 U	2.11		
1 TPH Volatiles in water by GC/MS	mg/L	20	2 U	2 U	2 U
Purgeable TPH	ug/L	50 U	50 U	50 U	50 U
1 VOCs in Drinking Water by GC/MS	09,2	50.0	500	50 0	500
Acetone	ug/L			10 U	10 U
Benzene	ug/L			0.50 U	0.50 U
Bromobenzene	ug/L			0.50 U	0.50 U
Bromochloromethane	ug/L			0.50 U	0.50 U
Bromodichloromethane	ug/L			0.50 U	0.50 U
Bromoform	ug/L			0.50 U	0.50 U
Bromomethane	ug/L			1.0 U	1.0 U
2-Butanone	ug/L			5.0 U	5.0 U
n-Butylbenzene	ug/L			0.50 U	0.50 U
sec-Butylbenzene	ug/L			0.50 U	0.50 U
tert-Butylbenzene	ug/L			0.50 U	0.50 U
Carbon Disulfide	ug/L			0.50 U	0.50 UJ
Carbon Tetrachloride	ug/L			0.50 U	0.50 U
Chlorobenzene	ug/L			0.50 U	0.50 U
Chloroethane	ug/L			0.50 U	0.50 U
Chloroform	ug/L			0.50 U	0.50 U
Chloromethane	ug/L			1.0 U	1.0 U
2-Chlorotoluene	ug/L			0.50 U	0.50 U
4-Chlorotoluene	ug/L			0.50 U	0.50 U
1,2-Dibromo-3-Chloropropane	ug/L			1.0 U	1.0 U
Dibromochloromethane	ug/L			0.50 U	0.50 U
1,2-Dibromoethane	ug/Ľ			0.50 U	0.50 U
Dibromomethane	ug/L			0.50 U	0.50 U
1,2-Dichlorobenzene	ug/L			0.50 U	0.50 U
1,3-Dichlorobenzene	ug/L			0.50 U	0.50 U
1,4-Dichlorobenzene	ug/L			0.50 U	0.50 U
Dichlorodifluoromethane	ug/L			0.50 UJ	0.50 UJ
1,1-Dichloroethane	ug/L			0.50 U	0.50 U
1,2-Dichloroethane	ug/L			0.50 U	0.50 U
1,1-Dichloroethene	ug/L			0.50 U	0.50 U
cis-1,2-Dichloroethene	ug/L			0.50 U	0.50 U
trans-1,2-Dichloroethene	ug/L			0.50 U	0.50 U
1,2-Dichloropropane	ug/L			0.50 U	0.50 U
1,3-Dichloropropane	ug/L			1.0 U	1.0 U
2,2-Dichloropropane	ug/L			0.50 U	0.50 U
1,1-Dichioropropene	ug/L			0.50 U	0.50 U
cis-1,3-Dichloropropene	ug/L			0.50 U	0.50 U

RLAB Approved Sample Analysis Results

02/23/2007

ą

Project ID: PRFEXAMS5

Analysis/ Analyte	Units	101	110-FB	201	202
trans-1,3-Dichloropropene	ug/L			0.50 U	0.50 U
Ethyl Benzene	ug/L			0.50 U	0.50 U
Hexachlorobutadiene	ug/L			0.50 U	0.50 U
2-Hexanone	ug/L			5.0 U	5.0 U
Isopropylbenzene	ug/L			0.50 U	0.50 U
p-Isopropyitoluene	- <u>s</u> , _ ug/L			0.50 U	0.50 U
Methylene Chloride	ug/L			0.50 U	0.50 U
4-Methyl-2-Pentanone	ug/L			5.0 U	5.0 U
Naphthalene	ug/L			1.0 U	1.0 U
n-Propylbenzene	ug/L			0.50 U	0.50 U
Styrene	ug/L			0.50 U	0.50 U
1,1,1,2-Tetrachloroethane	ug/L			0.50 U	0.50 U
1,1,2,2-Tetrachloroethane	ug/L			1.0 U	1.0 U
Tetrachloroethene	ug/L			0.50 U	0.50 U
Toluene	ug/L			0.50 U	0.50 U
1,2,3-Trichlorobenzene	ug/L			0.50 U	0.50 U
1,2,4-Trichlorobenzene	ug/L			0.50 U	0.50 U
1,1,1-Trichloroethane	ug/L			0.50 U	0.50 U
1,1,2-Trichloroethane	ug/L			0.50 U	0.50 U
Trichloroethene	ug/L			0.50 U	0.50 U
Trichlorofluoromethane	ug/L			1.0 U	1.0 U
1,2,3-Trichloropropane	ug/L			0.50 U	0.50 U
1,2,4-Trimethylbenzene	ug/L			0.50 U	0.50 U
1,3,5-Trimethylbenzene	ug/L			0.50 U	0.50 U
Vinyl Chloride	ug/L			0.50 U	0.50 U
m and/or p-Xylene	ug/L			0.50 U	0.50 U
o-Xylene	ug/L			0.50 U	0.50 U
1 VOCs in Water by GC/MS for Low Detection Li	mits				
Acetone	ug/L	5.0 UJ	5.0 UJ		
Benzene	ug/L	1.0 U	1.0 U		
Bromodichloromethane	ug/L	1.0 U	1.0 U		
Bromoform	ug/L	1.0 UJ	1.0 U		
Bromomethane	ug/L	1.0 U	1.0 U		
2-Butanone	ug/L	5.0 U	5.0 U		
Carbon Disulfide	ug/L	1.0 U	1.0 U		
Carbon Tetrachloride	ug/L	1.0 U	1.0 U		
Chlorobenzene	ug/L	1.0 UJ	1.0 U		
Chloroethane	ug/L	1.0 U	1.0 U		
Chloroform	ug/L	1.0 U	1.0 U		
Chloromethane	ug/L	1.0 UJ	1.0 UJ		
Cyclohexane	ug/L	1.0 U	1.0 U		
1,2-Dibromo-3-Chloropropane	ug/L	5.0 UJ	5.0 U		
Dibromochloromethane	ug/L	1.0 U	1.0 U		
1,2-Dibromoethane	ug/L	1.0 UJ	1.0 U		
1,2-Dichlorobenzene	ug/L	1.0 UJ	1.0 U		

ASR Number: 3324 Project ID: PRFEXAMS5

RLAB Approved Sample Analysis Results

02/23/2007

1

and the second

Analysis/ Analyte	Units	101	110-FB	201	202
1,3-Dichlorobenzene	ug/L	1.0 UJ	1.0 U		
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U		
Dichlorodifluoromethane	ug/L	1.0 UJ	1.0 UJ		
1,1-Dichloroethane	ug/L	1.0 U	1.0 U		
1,2-Dichloroethane	ug/L	1.0 U	1.0 U		
1,1-Dichloroethene	ug/L	1.0 U	1.0 U		
cis-1,2-Dichloroethene	ug/L	57	1.0 U		
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U		
1,2-Dichloropropane	ug/L	1.0 U	1.0 U		
cis-1,3-Dichioropropene	ug/L	1.0 U	1.0 U		
trans-1,3-Dichloropropene	ug/L	1.0 UJ	1.0 U		
Ethyi Benzene	ug/L	1.0 U	1.0 U		
2-Hexanone	ug/L	2.0 UJ	2.0 U		
Isopropylbenzene	ug/L	1.0 U	1.0 U		
Methyl Acetate	ug/L	5.0 บ	5.0 U		•
Methyl tert-butyl ether	ug/L	1.0 U	1.0 U		
Methylcyclohexane	ug/L	1.0 U	1.0 U		
Methylene Chloride	ug/L	1.0 U	5.3		
4-Methyl-2-Pentanone	ug/L	1.0 ບັງ	1.0 U		
Naphthalene	ug/L	2.0 UJ	2.0 U		
Styrene	ug/L	1.0 U	1.0 U		
1,1,2,2-Tetrachloroethane	ug/L	5.0 UJ	5.0 U		
Tetrachloroethene	ug/L	1.0 U	1.0 U		
Toluene	ug/L	1.0 U	1.0 U		
1,2,3-Trichlorobenzene	ug/L	1.0 U	1.0 U		
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U		
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U		-
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U		
Trichloroethene	ug/L	87	1.0 U		
Trichlorofluoromethane	ug/L	1.0 U	1.0 U		
1,1,2-Trichlorotrifluoroethane	ug/L	1.0 U	1.0 U		
Vinyl Chloride	ug/L	1.0 U	1.0 U		
m and/or p-Xylene	ug/L	1.0 U	1.0 U		
o-Xylene	ug/L	1.0 U	1.0 U		

RLAB Approved Sample Analysis Results

. .

····--··· •··· · · · · · · · · ·

02/23/2007

Project ID: PRFEXAMS5

Project Desc: Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis/ Analyte	Units	209-FB
1 TPH Volatiles in water by GC/MS		
Purgeable TPH	ug/L	50 U
1 VOCs in Drinking Water by GC/MS		
Acetone	ug/L	10 U
Benzene	ug/L	0.50 U
Bromobenzene	ug/L	0.50 U
Bromochloromethane	ug/L	0.50 U
Bromodichloromethane	ug/L	0.50 U
Bromoform	ug/L	0.50 U
Bromomethane	ug/L	1.0 U
2-Butanone	ug/L	5.0 U
n-Butylbenzene	ug/L	0.50 U
sec-Butylbenzene	ug/L	0.50 U
tert-Butylbenzene	ug/L	0.50 U
Carbon Disulfide	ug/L	0.50 U
Carbon Tetrachloride	ug/L	0.50 U
Chlorobenzene	ug/L	0.50 U
Chloroethane	ug/L	0.50 U
Chloroform	ug/L	0.50 U
Chloromethane	ug/L	1.0 U
2-Chlorotoluene	ug/L	0.50 U
4-Chiorotoluene	ug/L	0.50 U
1,2-Dibromo-3-Chloropropane	ug/L	1.0 U
Dibromochloromethane	ug/L	0.50 U
1,2-Dibromoethane	ug/L	0.50 U
Dibromomethane	ug/L	0.50 U
1,2-Dichlorobenzene	ug/L	0.50 U
1,3-Dichlorobenzene	ug/L	0.50 U
1,4-Dichlorobenzene	ug/L	0.50 U
Dichlorodifluoromethane	ug/L	0.50 UJ
1,1-Dichloroethane	ug/L	0.50 U
1,2-Dichloroethane	ug/L	0.50 U
1,1-Dichloroethene	ug/L	0.50 ປ
cls-1,2-Dichloroethene	ug/L	0.50 U
trans-1,2-Dichloroethene	ug/L	0.50 U
1,2-Dichloropropane	u g/L	0.50 U
1,3-Dichloropropane	ug/L	1.0 U
2,2-Dichloropropane	ug/L	0.50 U
1,1-Dichloropropene	ug/L	0.50 U
cis-1,3-Dichloropropene	ug/L	0.50 U
trans-1,3-Dichloropropene	ug/L	0. 50 U
Ethyl Benzene	ug/L	0.50 U
Hexachlorobutadiene	ug/L	0.50 U
2-Hexanone	ug/L '	5.0 U
Isopropylbenzene	ug/L	0.50 U
p-Isopropyltoluene	ug/L	0.50 U

Page 43 of 44

1

RLAB Approved Sample Analysis Results

...

Project ID: PRFEXAMS5

Project Desc: Forbes (EX) Atlas Missile Site S-5 - PA sampling

Analysis/ Analyte	Units	209-FB
Methylene Chloride	ug/L	0.50 U
4-Methyl-2-Pentanone	ug/L	5.0 U
Naphthalene	ug/L	1.0 U
n-Propylbenzene	ug/L	0.50 U
Styrene	ug/L	0.50 U
1,1,1,2-Tetrachioroethane	ug/L	0.50 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U
Tetrachloroethene	ug/L	0.50 U
Toluene	ug/L	0.50 U
1,2,3-Trichlorobenzene	ug/L	0.50 U
1,2,4-Trichlorobenzene	ug/L	0.50 U
1,1,1-Trichloroethane	ug/L	0.50 U
1,1,2-Trichloroethane	ug/L	0.50 U
Trichloroethene	ug/L	0.50 U
Trichlorofluoromethane	ug/L	1.0 U
1,2,3-Trichloropropane	ug/L	0.50 U
1,2,4-Trimethylbenzene	ug/L	0.50 U
1,3,5-Trimethylbenzene	ug/L	0.50 U
Vinyl Chloride	ug/L	0.50 U
m and/or p-Xylene	ug/L	0.50 U
o-Xylene	ug/L	0.50 U

.

.

United States Environmental Protection Agency Region VII 901 N. 5th Street Kansas City, KS 66101

Date: _/_/___

Subject: Data Disposition/Sample Release for ASR #: 3324

Project ID: PRFEXAMS5

Project Description: Forbes (EX) Atlas Missile Site S-5 - PA sampling

From: Paul Roemerman SUPR/MOKS

> To: Kaye Dollmann ENSV/RLAB/CATS

I have received and reviewed the Transmittal of Sample Analysis Results for the above-referenced Analytical Services Request(ASR) and have indicated my findings below by checking one of the boxes for Data Disposition.

"RELEASED" - Read-only to all Region 7 employees and contractors that have R7LIMS "Customer" account.

"Project Manager Accessible" - Available on the LAN in R7LIMS for my use only.

"Archived" - THIS DATA IS OF A SENSITIVE NATURE. Any future reports must be requested through the laboratory.

I have determined that the samples need to be held until ______, after which time they will be disposed of in accordance with applicable regulations. I understand that if I do not specify a "hold until" date, the process for proper disposal of the samples will be initiated 30 days after the date on the data transmittal.